
DISS. ETH NO. 30472

NEURAL POLICIES FOR PROSOCIAL
NAVIGATION

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES
(Dr. sc. ETH Zurich)

presented by

ZHEJUN ZHANG

M.Sc. in Electrical Engineering and Information Technology
ETH Zurich

born on 25.08.1994

accepted on the recommendation of

Prof. Dr. Luc Van Gool, examiner
Prof. Dr. Marco Pavone, co-examiner

Prof. Dr. Igor Gilitschenski, co-examiner
Dr. Alexander Liniger, co-examiner

2024

Dedicated to my wife Lin.

Abstract

In order for an autonomous vehicle to navigate safely and prosocially in dense urban
traffic, it needs to predict the potential motion of surrounding traffic participants and
apply a policy that incorporates the predicted trajectories of other agents. As the com-
plexity of this task scales up rapidly, learning-based methods become more preferable
compared to traditional planners. In this thesis, we explore techniques for training neural
policies for both autonomous vehicles and non-playable simulated traffic agents. Our
goal is twofold: to enhance the generalizability of the autonomous driving policy through
data, and to narrow the sim-to-real gap in terms of behavioral realism without adding
excessive computational overhead.

Firstly, we introduce Reinforcement Learning Coach (Roach), a two-stage approach to
end-to-end driving that combines reinforcement learning and imitation learning. In the
first stage, we train a reinforcement learning expert that maps bird’s-eye view images
to continuous low-level actions. While setting a new performance upper-bound on
the CARLA simulator, our expert also serves as a better coach, providing informative
supervision signals for imitation learning agents to learn from. In the second stage,
supervised by the Roach expert, a baseline end-to-end agent with monocular camera-
input achieves expert-level performance while generalizing to a new map and new
weather.

Secondly, we introduce a novel multiplicative value function for model-free reinforcement
learning algorithms to alleviate the poor sample efficiency suffered by the Roach expert.
The multiplicative value function consists of a safety critic and a reward critic. The safety
critic predicts the probability of constraint violation and discounts the reward critic,
which solely estimates constraint-free returns. Splitting responsibilities facilitates the
learning task, resulting in increased sample efficiency when training Proximal Policy
Optimization and Soft Actor Critic in safety-critic environments.

Thirdly, we address the issue of poor behavioral realism in existing simulators by training
simulated agents to exhibit human-like behaviors using real-world data. We show data-
driven traffic simulation can be formulated as a world model, and we present TrafficBots,
a multi-agent policy built upon motion prediction and end-to-end driving. Based on
TrafficBots, we develop a world model tailored for the planning module of autonomous
vehicles. Compared to existing data-driven traffic simulators, TrafficBots demonstrates
superior configurability and scalability.

Finally, we delve into the trade-off between the accuracy and efficiency of motion predic-
tion and traffic simulation methods. We introduce the K-nearest neighbor attention with
relative pose encoding (Knarpe), a novel attention mechanism allowing the pairwise-
relative representation to be used by Transformers. Then, based on Knarpe we present the
Heterogeneous Polyline Transformer with Relative pose encoding (HPTR), a hierarchical
framework enabling asynchronous token update during the online inference. By sharing

v

vi

contexts among agents and reusing the unchanged contexts, our approach is as efficient
as scene-centric methods, while performing as accurate as state-of-the-art agent-centric
methods. Hence, it is a superior architecture for motion prediction networks and neural
policies for autonomous vehicles and robots.

Zusammenfassung

Um ein autonomes Fahrzeug sicher und prosozial im dichten städtischen Verkehr zu
navigieren, muss es die potenzielle Bewegung der umliegenden Verkehrsteilnehmer
voraussagen und eine Richtlinie anwenden, die die vorhergesagten Trajektorien anderer
Agenten berücksichtigt. Da die Komplexität dieser Aufgabe rapide zunimmt, werden
lernbasierte Methoden gegenüber traditionellen Planern bevorzugt. In dieser Arbeit
untersuchen wir Techniken zur Schulung neuronaler Richtlinien für sowohl autonome
Fahrzeuge als auch nicht-spielbare simulierten Verkehrsagenten. Unser Ziel ist zweigleisig:
die Verallgemeinerbarkeit der autonomen Fahrtrichtlinie durch Daten zu verbessern
und die Lücke zwischen Simulation und Realität in Bezug auf Verhaltensrealismus zu
verringern, ohne dabei eine übermäßige Rechenlast hinzuzufügen.

Zunächst führen wir Reinforcement Learning Coach (Roach) ein, einen zweistufigen An-
satz für das End-to-End-Fahren, der Verstärkungslernen und Imitationslernen kombiniert.
In der ersten Stufe trainieren wir einen Verstärkungslernexperten, der Vogelperspekti-
venbilder auf kontinuierliche, niedrigstufige Aktionen abbildet. Während er einen neuen
Leistungsrekord auf dem CARLA-Simulator setzt, fungiert unser Experte auch als besse-
rer Trainer, der informative Überwachungssignale für Imitationslernagenten liefert. In der
zweiten Stufe erreicht ein Baseline-End-to-End-Agent mit monokularem Kameraeingang
unter der Aufsicht des Roach-Experten Expertenleistung und generalisiert auf eine neue
Karte und neues Wetter.

Zweitens führen wir eine neuartige multiplikative Wertefunktion für modellfreie Verstär-
kungslernalgorithmen ein, um die geringe Proben-Effizienz zu mildern, unter der der
Roach-Experte leidet. Die multiplikative Wertefunktion besteht aus einem Sicherheitskriti-
ker und einem Belohnungskritiker. Der Sicherheitskritiker sagt die Wahrscheinlichkeit
einer Einschränkungsverletzung voraus und reduziert den Belohnungskritiker, der aus-
schließlich freiheitsbeschränkte Rückgaben schätzt. Die Aufteilung der Verantwortlich-
keiten erleichtert die Lernaufgabe und führt zu einer erhöhten Proben-Effizienz beim
Training von Proximal Policy Optimization und Soft Actor Critic in Sicherheitskritikum-
gebungen.

Drittens gehen wir das Problem des schlechten Verhaltensrealismus in bestehenden
Simulatoren an, indem wir simulierte Agenten mit realen Daten trainieren, um men-
schenähnliches Verhalten zu zeigen. Wir zeigen, dass datengesteuerte Verkehrssimulation
als Weltmodell formuliert werden kann, und stellen TrafficBots vor, eine Multi-Agenten-
Richtlinie, die auf Bewegungsvorhersage und End-to-End-Fahren basiert. Basierend auf
TrafficBots entwickeln wir ein Weltmodell, das speziell für das Planungsmodul auto-
nomer Fahrzeuge zugeschnitten ist. Im Vergleich zu vorhandenen datengesteuerten
Verkehrssimulatoren demonstriert TrafficBots eine überlegene Konfigurierbarkeit und
Skalierbarkeit.

vii

viii

Schließlich gehen wir auf den Kompromiss zwischen Genauigkeit und Effizienz von
Bewegungsvorhersage- und Verkehrssimulationsmethoden ein. Wir stellen das K-nearest-
neighbor attention with relative pose encoding (Knarpe) vor, einen neuartigen Auf-
merksamkeitsmechanismus, der es ermöglicht, die paarweise-relative Darstellung von
Transformers zu verwenden. Basierend auf Knarpe präsentieren wir dann den Heteroge-
neous Polyline Transformer mit relativer Positions-Codierung (HPTR), ein hierarchisches
Rahmenwerk, das eine asynchrone Token-Aktualisierung während der Online-Inferenz er-
möglicht. Durch das Teilen von Kontexten zwischen Agenten und die Wiederverwendung
der unveränderten Kontexte ist unser Ansatz so effizient wie szenezentrierte Methoden
und dabei so genau wie agentenzentrische Methoden auf dem neuesten Stand der Tech-
nik. Daher ist es eine überlegene Architektur für Bewegungsvorhersagenetzwerke und
neuronale Richtlinien für autonome Fahrzeuge und Roboter.

Publications

The following publications are included as a whole or in parts in this thesis:

• Z. Zhang, A. Liniger, D. Dai, F. Yu, and L. Van Gool. “End-to-end urban driving by imitating a
reinforcement learning coach”. In: Proceedings of the IEEE/CVF international conference on computer
vision (ICCV). 2021.

• N. Bührer, Z. Zhang, A. Liniger, F. Yu, and L. Van Gool. “A Multiplicative Value Function for
Safe and Efficient Reinforcement Learning”. In: International Conference on Intelligent Robots and
Systems (IROS). 2023.

• Z. Zhang, A. Liniger, C. Sakaridis, F. Yu, and L. Van Gool. “Real-Time Motion Prediction via
Heterogeneous Polyline Transformer with Relative Pose Encoding”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2023.

• Z. Zhang, A. Liniger, C. Sakaridis, F. Yu, and L. Van Gool. “TrafficBots: Towards World Models
for Autonomous Driving Simulation and Motion Prediction”. In: International Conference on
Robotics and Automation (ICRA). 2023.

Acknowledgements

The research presented in this thesis is funded by Toyota Motor Europe via the research
project TRACE-Zürich.

The last four years at CVL have been an enjoyable experience. Firstly, I would like to
thank my supervisor, Prof. Dr. Luc Van Gool, for giving me the opportunity to start
my PhD and the freedom during my PhD. I truly believe that research freedom and a
positive working atmosphere are the most important aspects for a research team.

I am deeply grateful to Dr. Alexander Liniger, my second supervisor and the most
significant contributor to my PhD, for his consistent guidance and feedback throughout
the entire duration of my doctoral studies. Brainstorming with Alex is always so fruitful
and inspiring. Additionally, I would like to thank my co-authors, Dr. Dengxin Dai, Dr.
Christos Sakaridis, and Nick Bührer, for their contributions to my publications.

Next, I want to express my appreciation to my co-examiners, Prof. Dr. Marco Pavone and
Prof. Dr. Igor Gilitschenski. It was fortunate for me to meet you at the conference, and it
is an honor to have you as members of my PhD committee. I would like to thank Prof.
Dr. Marco Pavone also for providing me with the opportunity to join his research team
at NVIDIA for an internship. And I want to thank everyone from the industry whom I
met at conferences, specifically Dr. Yuxiao Chen, Dr. Maximilian Igl, Dr. Boris Ivanovic,
Dr. Peter Karkus, Dr. Sushant Veer, and Jonah Philion from NVIDIA; as well as Xieyuan
Zhang, Dr. Long Chen, and Dr. Anthony Hu from Wayve. The conversations we had
were so enjoyable and intriguing.

I want to express my gratitude to everyone at CVL. In particular, I appreciate my office
mate Mengya Liu, Dr. Prune Truong, and Dr. Janis Postels for the limited but lovely dates
we met in the office. Special thanks to TRACE members Dr. Jan-Nico Zaech, Dr. Ozan
Ünal, Dr. Deng-Ping Fan, Dr. Simon Hecker, Dr. Anton Obukhov, Dr. Vaishakh Patil, and
Dr. Martin Hahner for the unforgettable time we spent on Zoom and in Belgium for the
update meetings. Lastly, I want to say thank you to Dr. Yigit Baran Can, Dr. Menelaos
Kanakis, and Dr. David Brüggemann for the interesting and informative coffee talks.

I would also like to thank Yan Wu, Siyuan Li, Roy Yang, Mattia Segù, and our always-
happy Italian friend Luigi Piccinelli for joining the CVL family and adding more fun to
our experiences. And I want to pay my deepest tribute to Dr. Yifan Liu. I will never
forget the sunny days in London when we attended ICRA together, and I will do my best
to prevent the misfortune that happened to you from happening again to someone else.

Finally, I want to thank my wife, Dr. Lin Zhang, for her constant support over the past
twelve years, starting from the first semester of our Bachelor’s study at TU Munich back
in 2012. And, of course, I have to give my biggest thanks to my four-legged furry friends,
Pepino and Panini! I cannot imagine how I would have survived the depressive days
during my PhD, especially during the pandemic, without them.

Contents

1 Introduction 1
1.1 Autonomous Driving . 3

1.1.1 End-to-End Driving . 3
1.1.2 Imitation Learning . 3
1.1.3 Reinforcement Learning . 4

1.2 Traffic Simulation . 4
1.2.1 Data-Driven Simulation . 4
1.2.2 World Models . 5
1.2.3 Motion Prediction . 5

1.3 Thesis Outline . 6

2 End-to-End Urban Driving by Imitating a Reinforcement Learning Coach 9
2.1 Introduction. 9
2.2 Related Work . 11
2.3 Method . 13

2.3.1 RL Coach . 13
2.3.2 IL Agents Supervised by Roach . 16

2.4 Experiments. 18
2.4.1 Performance of Experts . 18
2.4.2 Performance of IL Agents . 19

2.5 Conclusion . 23

Appendices 25
2.A Summary . 25
2.B Other Supplementary Materials . 25

2.B.1 Videos . 25
2.B.2 Code . 26
2.B.3 Rendering issues . 26

2.C Implementation Details . 26
2.C.1 Roach. 26
2.C.2 IL Agent Supervised by Roach . 31
2.C.3 Autopilot . 34

2.D Benchmarks . 34
2.E Additional Experimental Results. 37

3 A Multiplicative Value Function for Safe and Efficient Reinforcement Learn-
ing 41
3.1 Introduction. 41

contents

3.2 Related Work . 43
3.3 Preliminaries . 44
3.4 Methods . 45
3.5 Experimental Results . 47

3.5.1 Results and Comparisons . 48
3.5.2 Real-World Experiments. 52

3.6 Conclusions and Limitations . 54

Appendices 55
3.A Supplementary Video . 55
3.B Hyperparameter Tuning . 55
3.C Complete Algorithms for SAC and PPO Multiplicative. 55
3.D Detailed Experimental Description . 58
3.E Point Robot Navigation . 59
3.F Additional Experimental Results. 61
3.G Additional Ablation Studies . 67

4 TrafficBots: Towards World Models for Autonomous Driving Simulation
and Motion Prediction 69
4.1 Introduction. 69
4.2 Related Work . 71
4.3 Problem Formulation . 72
4.4 TrafficBots . 73

4.4.1 Policy. 73
4.4.2 Contexts . 73
4.4.3 Training . 76
4.4.4 Implementation Details . 76

4.5 Experiments. 76
4.6 Conclusions and Future Works. 82

Appendices 83
4.A Supplementary Video . 83
4.B Dataset and Pre-Processing . 83
4.C Ground-Truth Destination . 84
4.D Detailed Network Architecture. 85
4.E Training Details . 87
4.F Inference Details . 88
4.G More Experimental Results . 89

5 Real-Time Motion Prediction via Heterogeneous Polyline Transformer with
Relative Pose Encoding 91
5.1 Introduction. 91
5.2 Related work . 93
5.3 Method . 94

5.3.1 Pairwise-Relative Polyline Representation 95

contents

5.3.2 K-Nearest Neighbors Attention with Relative Pose Encoding . . . 96
5.3.3 Heterogeneous Polyline Transformer with Relative Pose Encoding 97
5.3.4 Output Representation and Training Strategies 98

5.4 Experiments. 99
5.4.1 Experimental Setup . 99
5.4.2 Benchmark Results .101
5.4.3 Ablation Study .101
5.4.4 Efficiency Analysis and Qualitative Results.102

5.5 Conclusion .105

Appendices 106
5.A Output Representation and Training Strategies106
5.B Implementation Details .106

5.B.1 Knarpe Implementation. .106
5.B.2 Network Architectures. .107
5.B.3 Pre-Processing and Post-Processing108

5.C Explanation of the Visualization .108
5.D Additional Ablation Studies .110
5.E Additional Quantitative Results .110
5.F Additional Qualitative Results .113

6 Summary and Perspectives 115
6.1 Summary of Contributions .115
6.2 Discussion and Future Perspectives .116

Bibliography 119

List of Figures

2.1 Roach: RL Coach . 11
2.2 The BEV representation used by our Roach 14
2.3 Network architecture of Roach, the RL expert, and CILRS, the IL agent. . . 16
2.4 Learning curves of RL experts . 19
2.5 Driving score of experts and IL agents . 21
2.6 Rendering issue of CARLA 0.9.11 running on Ubuntu with OpenGL 27
2.7 Feature loss w.r.t. Roach . 37
2.8 Driving performance of experts and IL agents on the NoCrash-busy bench-

mark . 38
2.9 Driving performance of experts and IL agents on the offline LeaderBoard-

busy benchmark . 39

3.1 Motivation for Multiplicative Value Function 42
3.2 Qualitative Results . 48
3.3 Qualitative results on robot navigation environments 52
3.4 Attention Encoder used for the real world experiments 53
3.5 Real World Experiments . 54
3.6 Point Robot Navigation. 59
3.7 Top-down view of the Jackal Robot . 60
3.8 Gazebo Gym . 61
3.9 SAC training curves. 62

3.10 PPO training curves. 62
3.11 Qualitative comparison of SAC vs SAC Mult Clipped 63
3.12 Qualitative comparison of PPO base vs PPO Mult V1 64
3.13 Qualitative results on Gazebo Gym with SAC. 66
3.14 Ablation experiments in point robot navigation. 68

4.1 World model for AD planning modules . 70
4.2 TrafficBots, a multi-agent policy . 70
4.3 Network architecture of TrafficBots . 74
4.4 GT destination and goal of the magenta agent 75
4.5 Qualitative results of TrafficBots. 81
4.6 State encoders with different architectures. 85
4.7 Transformer encoder layer with pre-layer-norm. 86
4.8 Combine personality/destination . 87

5.1 HPTR Motivation . 92
5.2 Pairwise-relative polyline representation. 95
5.3 The hierarchical architecture of HPTR . 98

list of figures

5.4 HPTR efficiency analysis .103
5.5 Efficiency comparison with HDGT .103
5.6 Qualitative results of HPTR .104
5.7 KNARPE implementation .107
5.8 The validation mAP and minFDE logged during the training of our HPTR 109
5.9 Qualitative results of HPTR predicting vehicles.113

5.10 Qualitative results of HPTR predicting pedestrians114
5.11 Qualitative results of HPTR predicting cyclists114

List of Tables

2.1 Success rate and driving score of experts . 20
2.2 Success rate of camera-based end-to-end IL agents on NoCrash-dense . . . 22
2.3 Driving performance and infraction analysis of IL agents on NoCrash-busy,

new town & new weather . 22
2.4 The network architecture used for Roach . 29
2.5 The hyper-parameter values used for Roach. 31
2.6 The network architecture used for our IL agent 32
2.7 The hyper-parameter values used for our IL agent 34
2.8 Scope of the NoCrash benchmark and the offline LeaderBoard benchmark. 35
2.9 Background traffic settings for different benchmarks. 36

3.1 SAC and PPO evaluation results . 51

4.1 Results on the WOMD (marginal) leaderboard 77
4.2 Ablation on the WOMD validation split, a priori simulation K=6 (motion

prediction) . 79
4.3 Ablation on the WOMD validation split, a posteriori simulation K=1 80
4.4 Performance on the Waymo (joint) interactive prediction leaderboard. . . . 89

5.1 Results on the marginal motion prediction leaderboards of WOMD and
AV2 .100

5.2 Ablation on the valid split of WOMD .102
5.3 Ablation on WOMD valid split .110
5.4 Complete results of our HPTR on the AV2 test split.110
5.5 Complete results of our HPTR on the WOMD test split111
5.6 Complete results of our HPTR on the WOMD valid split112

1
Introduction

Navigation in the proximity of humans and human-driven vehicles is one of the most
fundamental tasks for large-scale deployment of autonomous vehicles (AV) and robots
in our daily lives. Traditionally, the navigation task has been tackled using a modular
pipeline that typically consists of four modules, arranged from upstream to downstream
as follows:

• Perception: Generating detection or tracking results from sensor measurements,
such as camera images and Lidar point clouds.

• Prediction: Forecasting the future motion of surrounding objects based on their
historical trajectories and environmental contexts, such as a high-definition map.

• Planning: Generating the future trajectory for the ego agent given the outputs from
perception and prediction modules.

• Control: Controlling the actuators of the ego agent to follow the planned trajectory.

In practice, the prediction and the control module can be simplified or even neglected,
depending on the complexity of the operational design domain (ODD) and the mechanical
dynamics of the ego vehicle or robot.

Over the past decade, the remarkable achievements of deep learning have led to an
increased adoption of data-driven approaches across various segments of this pipeline.
Notably, it has been observed that upstream modules extensively use big data and deep
learning techniques, while downstream modules place a greater emphasis on physical
models and manually crafted rules. In fact, today’s perception modules are almost com-
pletely based on deep learning [1], whereas the control modules are predominantly built
upon physics [2]. This phenomenon can be explained by the complexity of different tasks
and the generalizability of different methods. Considering that the ODD for today’s AV
and robots encompasses unstructured and consistently changing outdoor environments,
conventional model-based methods are incapable of addressing the perception challenge
due to the lack of generalizability. On the contrary, addressing the control problem
through a model-based approach is feasible because, in most cases, the robot and vehicle
dynamics are well-defined, except when the ODD involves off-road navigation under
extreme road conditions.

While this conclusion is evident for the perception module at the most upstream level
and the control module at the most downstream level, the preference between data-
driven and model-based methods remains controversial for the intermediate modules,

1

2 1 introduction

namely prediction and planning. In recent years, there has been a trend in transitioning
from model-based to data-driven approaches in prediction and planning modules, or,
more radically, replacing either the complete or part of the modular pipeline with an
end-to-end (E2E) model [3, 4]. This shift is not only because of the success of deep
learning in perception tasks, but also because the ODD of AV and robots has extended
to environments involving interaction with humans, such as navigating through dense
urban traffic. This task of prosocial navigation demands high generalizability and human-
acceptable behavior from the prediction and planning algorithms, which can be more
elegantly addressed through large-scale datasets and deep neural networks. This trend
is also observed in the recent progress in the AV industry, where many companies have
explored E2E approaches, such as those employed by Waymo [4, 5], NVIDIA [6, 7],
Waabi [8], Tesla [9], and Wayve [10].

The scope of E2E driving is not restricted to a policy that maps sensor measurements to
low-level actions. It usually also includes “mid-to-mid” methods, which map the output
of perception module to motion trajectories. This relaxation is valid because the problem
formulation remains unchanged: generating a motion plan for the ego agent based on
past observations. Importantly, the learned model must function as a policy, i.e., the
E2E model will be rolled out auto-regressively at inference time. Auto-regressive rollout
means the current inputs to the policy can be influenced by its own outputs at previous
time steps. This will lead to error accumulation due to covariate shift [11] if the policy
is trained using an expert dataset in a supervised fashion, specifically through behavior
cloning. This is because the learned policy is most likely imperfect, and the pre-collected
expert demonstrations used for training cannot provide guidance on recovering from
situations caused by this imperfection. One of the most promising ways to alleviate this
problem is to use on-policy data, i.e., experiences collected by executing the policy, to
refine the policy through imitation learning (IL) or reinforcement learning (RL). In IL, the
on-policy data has to be annotated by an expert with the correct actions, whereas in RL, a
reward is needed to quantify how well a policy performs. In any case, an environment is
necessary for collecting the on-policy data. Since the policy is imperfect, executing it in
the real world could be dangerous, especially when the environment involves humans in
proximity. Therefore, it is preferable to use simulation as a substitute to train and test
neural policies for AV and robots.

Policies trained and tested solely in simulation are prone to overfitting to the simulated
environment. To effectively deploy such policies in the real world, it is essential to tackle
two challenges: minimizing the sim-to-real gap inherent in the simulation and facilitating
the sim-to-real transfer for the policy. In this thesis, our focus will be on the first challenge,
as a high-fidelity simulator is not only valuable for training neural policies but also for
testing all kinds of AV algorithms, including those that are not data-driven or E2E. For
this challenge, there is also a trend towards employing more data-driven approaches,
particularly in enhancing the photo-fidelity and behavior-fidelity of the simulator. In
the past, achieving photo-fidelity depended on advanced game engines and skilled 3D
artists [12], a process that was economically expensive and lacked scalability. Recently,
however, numerous data-driven real-to-sim methods have been introduced to reconstruct
real-world observations and synthesize sensor measurements [13], including camera
images [14] and Lidar point clouds [15]. Similarly, behavior-fidelity used to rely on
sophisticated rules heuristically designed by engineers [16]. This was not a challenging

1.1 autonomous driving 3

task in the past when the ODD mainly consisted of scenarios with scarce interaction
with humans, such as highways. However, when the environment expands to include
densely populated urban scenarios, the complexity of manually crafting rules becomes
overwhelming, making this approach infeasible. To address this problem, various data-
driven traffic simulation methods [17, 18] have been proposed to generate human-like
behavior for bot agents in the simulation through neural policies learned from real-world
datasets.

In the following Section 1.1, we will review existing works on autonomous driving, with
a focus on learning neural policies for the ego vehicle. Then in Section 1.2, we will review
related works on traffic simulation, with a focus on learning neural policies for simulated
traffic participants. Finally, in Section 1.3, we will present an outline of this thesis, which
addresses several critical problems in learning neural policies for prosocial navigation.

1.1 Autonomous Driving

The first part of this thesis focuses on training a neural policy for the AV to navigate safely
and prosocially in dense urban traffic. Following the E2E driving problem formulation,
we define the input end of the policy to be either the sensor measurements or the
intermediate representations generated by the perception module, and the output end to
be either planned trajectories or actions for the ego vehicle. To train such a policy, we will
leverage techniques from previous works on E2E driving, IL, and RL.

1.1.1 End-to-End Driving

Although the first E2E driving approach was proposed in the 1980s [19], most AV
solutions deployed on public roads today still rely on a modular pipeline [2, 20, 21, 22].
However, current AV solutions do not perform well enough for massive deployment
in cities due to the complexity and the long tail in urban driving scenarios [23, 24, 25].
Hence, there is a recent trend in the AV industry [4, 9, 10] and research [26, 27, 28, 29]
to revisit data-driven E2E autonomous driving. Typical E2E driving methods directly
map sensor measurements to low-level actions, thereby replacing the entire modular AV
stack with a single deep neural network [3, 6, 30, 31, 32, 33, 34]. However, this approach
demands a large amount of data and suffers from poor generalizability [35]. This problem
can be addressed by using more structured representations for input and output, which
means the E2E model now replaces only some parts of the modular pipeline [7, 36, 37, 38,
39, 40, 41]. We refer to [42, 43] for a comprehensive review of E2E driving.

1.1.2 Imitation Learning

Imitating the expert demonstrations is the most straight-forward approach to train
E2E driving policies [3, 4, 30, 34]. However, training policies via supervised learning,
specifically behavior cloning, often leads to covariate shift [11, 32], which can be partially
mitigated through data augmentation techniques [6, 19, 44]. A more effective solution to

4 1 introduction

this problem is applying data aggregation (DAGGER) [11], which demands an interactive
environment such as the CARLA simulator [12] and on-policy demonstrations from
humans [45, 46] or automated experts [39, 40, 47, 48]. The automated experts can be
either hand-crafted [32] or trained using IL [39] or RL [35]. In the absence of on-policy
interactions with the environment, alternatives such as GAIL [49] and inverse RL [50] can
be employed, although these methods tend to be less efficient and may not perform as
well.

1.1.3 Reinforcement Learning

Motivated by the successes of model-free RL in diverse gaming scenarios [51, 52, 53, 54],
numerous studies have extended model-free RL techniques [55, 56, 57, 58] to autonomous
driving, both in simulated environments [12, 59, 60, 61, 62] and real-world settings [44, 45,
63, 64]. In [65], RL was combined with IL, while in [66] studied multi-agent RL is studied
for E2E driving in simulation. A more detailed review of RL for AV can be found in [67].

Given that collision avoidance, a core function of AV, is modeled as constraint satisfaction
within the RL framework, and considering that constraint violations in real-world scenar-
ios may lead to catastrophic accidents, extensive research has focused on developing safe
RL methodologies [68, 69, 70, 71]. These methodologies can be broadly classified into
four categories: Lagrangian, primal, Lyapunov and intervention. The Lagrangian-based
approach [68, 72, 73, 74, 75] is the most popular approach used in most of the RL for
AV publications mentioned above. This approach converts the constrained problem into
an unconstrained one by relaxing the safety constraint with a Lagrange multiplier. The
other three approaches are less popular because they are more difficult to implement and
their performance is not superior. The primal approach [76, 77, 78, 79, 80] computes a
policy gradient that satisfies the constraints. The Lyapunov-based approach [81, 82, 83,
84] leverages Lyapunov functions, which are used in control theory to prove the stability
of a dynamical system. The intervention approach [85, 86, 87, 88] uses backup policies to
ensure safe actions. We refer to [89, 90] for an overview of the recent advances in safe RL.

1.2 Traffic Simulation

The second part of this thesis focuses on training a neural policy for bot agents in the
simulation. To minimize the behavioral sim-to-real gap, simulated traffic participants
surrounding the AV should exhibit human-like behavior, as observed in daily lives on
public roads. To achieve that, we will leverage techniques from previous works on
data-driven simulation, world models and motion prediction.

1.2.1 Data-Driven Simulation

Various data-driven approaches have been introduced to reduce the sim-to-real gap in
perception, realized specifically through the synthesis of camera images [14, 44, 91, 92, 93],
LiDAR point clouds [15, 94], and 3D assets [95, 96]. For the planning modules, however,

1.2 traffic simulation 5

the sim-to-real gap in terms of the behavior of bot agents is more important. Compared
to the hand-crafted rules [12, 97, 98], more realistic behaviors can be generated through
log-replay [99, 100, 101, 102, 103, 104] or data-driven traffic simulation. The problem of
learning realistic behaviors is formulated as generative adversarial IL [49] in [105, 106, 107,
108], as behavior cloning in [109], as flow prediction in [110], as diffusion model in [111],
and as model-based IL in [18, 112]. While the behavioral realism of vehicles considers
only the trajectories, the behavioral realism of pedestrians also includes animation [113].
In order to stress test the planner, methods like [114, 115] have been proposed to generate
challenging driving scenarios. We refer to [116] for a more detailed review of data-driven
traffic simulation.

1.2.2 World Models

While the aforementioned data-driven simulation approaches address only part of a
full-stack simulator, a world model can be considered a fully data-driven E2E simulator.
World models [117] are action-conditional dynamics models learned from observational
data. As a differentiable substitute of the actual environment or a full-stack simulator,
world models can be used for planning [118] and policy learning [119, 120]. Training
world models is often formulated as a video prediction problem such that the method can
generalize to all image-based environments, like Atari [121] and highway driving [122].
Recently, encouraged by the success of generative models, specifically diffusion mod-
els [123], for image [124, 125] and video [126, 127], numerous world models have been
proposed for more challenging applications such as AV [128] and robots [129, 130, 131,
132]. A recent survey on world models for autonomous driving can be found in [133].

1.2.3 Motion Prediction

Data-driven traffic simulation often relies on the network architecture of motion prediction
methods. In fact, traffic simulation can be considered as a closed-loop counterpart of the
open-loop motion prediction [18, 112] and the same datasets [134, 135, 136] are used for
both tasks. However, while the problem formulation of motion prediction could be either
marginal for individual agent [137] or joint for all agents in the same scene [137, 138,
139], traffic simulation is always joint [140]. In contrast to policy learning for AV, traffic
simulation [140] and motion prediction [137] often require multi-modal outputs, which
can be addressed using goal conditioning [141, 142, 143, 144] and conditional variational
autoencoder [145, 146, 147, 148]. While previous motion prediction approaches [146, 149]
used recurrent neural networks [148, 150, 151, 152] and rasterized images [147, 153, 154,
155] with convolutional neural networks [156, 157], better performance is achieved by
recent methods using vectorized representations [158] as input and Transformers [159,
160, 161] as the network backbone.

The vectorized representation falls into three categories: agent-centric [158], scene-
centric [162] and pairwise-relative [163]. The agent-centric representation is the most
popular one because of its good performance [164, 165, 166, 167]. By transforming all
inputs to the local coordinates of each target agent, it ensures rotation and translation
invariance but at the cost of poor scalability as the number of target agents grows. The

6 1 introduction

scene-centric representation is the most efficient and scalable approach, because it shares
the contexts among all target agents by transforming all inputs to a global coordinate [162].
However, it performs poorly due to its lack of rotation and translation invariance. The
pairwise-relative representation combines the best of both worlds by introducing a pair
of global pose and local attribute for each object [163, 168, 169]. Methods using this
representation can achieve high accuracy and scalability at the same time [170, 171]. This
advantage is crucial for large-scale data-driven simulation and onboard deployment of
AV and robots.

1.3 Thesis Outline

In this thesis, we address several issues that arise while learning E2E policy for AV and
learning multi-agent policies for traffic simulation.

In Chapter 2, we propose Roach [35], the RL coach, which maps bird’s-eye view images
to continuous actions, and we use Roach to supervise an E2E IL driving policy. Roach
eliminates the need for human experts and outperforms previous automated experts.
Moreover, it also serves as a better teacher, providing more informative supervision
signals for the IL student policy to learn from. We validate the effectiveness of our
approach in the CARLA simulator.

Then, in Chapter 3, we address a limitation of Roach: the poor sample efficiency during
the training of the mid-to-end RL policy. Specifically, we investigate more stable and
efficient methods to train model-free RL algorithms in safety-critical environments such
as autonomous driving. To this end, we propose a novel multiplicative value function [71]
comprising a safety critic, which predicts the probability of constraint violation, and a
reward critic, which estimates only constraint-free returns. By splitting responsibilities,
we facilitate the learning task, leading to increased sample efficiency when applying to
Proximal Policy Optimization (PPO) [172] and Soft Actor Critic (SAC) [58] in safety-critical
environments

In Chapter 4, we address another limitation of Roach: the unnatural behavior exhibited
by simulated agents in the CARLA simulator we used for training and testing our
algorithms. To this end, we introduce TrafficBots [112], a multi-agent nueral policy built
upon motion prediction and E2E driving. Then we draw a parallel between data-driven
traffic simulation and world models. Based on TrafficBots we obtain a world model
tailored for the planning module of AV. To address the configurability and multi-modality
of the simulation, TrafficBots assigns a destination and a personality to each agent. To
ensure the scalability, TrafficBots use the scene-centric representation and a new scheme
of positional encoding.

Finally, in Chapter 5, we address the limitation of TrafficBots, which is the poor per-
formance caused by the usage of the scene-centric representation. To achieve that, we
introduce the K-nearest neighbor attention with relative pose encoding (Knarpe), a novel
attention mechanism allowing the pairwise-relative representation to be used by Trans-
formers. Then based on Knarpe we present the Heterogeneous Polyline Transformer
with Relative pose encoding (HPTR), a hierarchical framework enabling asynchronous
token update during the online inference [170]. The new motion prediction architecture,

1.3 thesis outline 7

HPTR, performs on par with state-of-the-art agent-centric methods, while maintaining the
efficiency and scalability of scene-centric methods. As a result, it is suitable for on-board
and real-time applications, as well as large-scale traffic simulation.

2
End-to-End Urban Driving by Imitating
a Reinforcement Learning Coach

End-to-end approaches to autonomous driving commonly rely on expert demonstra-
tions. Although humans are good drivers, they are not good coaches for end-to-end
algorithms that demand dense on-policy supervision. On the contrary, automated experts
that leverage privileged information can efficiently generate large scale on-policy and
off-policy demonstrations. However, existing automated experts for urban driving make
heavy use of hand-crafted rules and perform suboptimally even on driving simulators,
where ground-truth information is available. To address these issues, we train a rein-
forcement learning expert that maps bird’s-eye view images to continuous low-level
actions. While setting a new performance upper-bound on CARLA, our expert is also a
better coach that provides informative supervision signals for imitation learning agents
to learn from. Supervised by our reinforcement learning coach, a baseline end-to-end
agent with monocular camera-input achieves expert-level performance. Our end-to-end
agent achieves a 78% success rate while generalizing to a new town and new weather
on the NoCrash-dense benchmark and state-of-the-art performance on the challenging
public routes of the CARLA LeaderBoard.

2.1 Introduction

Even though nowadays, most autonomous driving (AD) stacks [173, 174] use individual
modules for perception, planning and control, end-to-end approaches have been proposed
since the 80’s [19] and the success of deep learning brought them back into the research
spotlight [6, 175]. Numerous works have studied different network architectures for
this task [3, 4, 34], yet most of these approaches use supervised learning with expert
demonstrations, which is known to suffer from covariate shift [11, 32]. While data
augmentation based on view synthesis [6, 19, 44] can partially alleviate this issue, in this
paper, we tackle the problem from the perspective of expert demonstrations.

This chapter was published as a conference article: Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu, Luc
Van Gool, “End-to-End Urban Driving by Imitating a Reinforcement Learning Coach”, Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2021, doi: 10.1109/ICCV48922.2021.01494

9

https://ieeexplore.ieee.org/document/9711506

10 2 roach

Expert demonstrations are critical for end-to-end AD algorithms. While imitation learning
(IL) methods directly mimic the experts’ behavior [4, 30], reinforcement learning (RL)
methods often use expert demonstrations to improve sample efficiency by pre-training
part of the model via supervised learning [60, 64]. In general, expert demonstrations
can be divided into two categories: (i) Off-policy, where the expert directly controls the
system, and the state/observation distribution follows the expert. Off-policy data for
AD includes, for example, public driving datasets [136, 176, 177]. (ii) On-policy, where
the system is controlled by the desired agent and the expert “labels" the data. In this
case, the state/observation distribution follows the agent, but expert demonstrations
are accessible. On-policy data is fundamental to alleviate covariate shift as it allows the
agent to learn from its own mistakes, which the expert in the off-policy data does not
exhibit. However, collecting adequate on-policy demonstrations from humans is non-
trivial. While trajectories and actions taken by the human expert can be directly recorded
during off-policy data collection, labeling these targets given sensor measurements turns
out to be a challenging task for humans. In practice, only sparse events like human
interventions are recorded, which, due to the limited information it contains, is hard to
use for training and better suited for RL [44, 45, 63] than for IL methods.

In this work we focus on automated experts, which in contrast to human experts can
generate large-scale datasets with dense labels regardless of whether they are on-policy or
off-policy. To achieve expert-level performance, automated experts may rely on exhaustive
computations, expensive sensors or even ground truth information, so it is undesirable to
deploy them directly. Even though some IL methods do not require on-policy labeling,
such as GAIL [49] and inverse RL [50], these methods are not efficient in terms of
on-policy interactions with the environment.

On the contrary, automated experts can reduce the expensive on-policy interactions.
This allows IL to successfully apply automated experts to different aspects of AD. As
a real-world example, Pan et al. [47] demonstrated end-to-end off-road racing with a
monocular camera by imitating a model predictive control expert with access to expensive
sensors. In the context of urban driving, [32] showed that a similar concept can be applied
to the driving simulator CARLA [12]. Driving simulators are an ideal proving ground
for such approaches since they are inherently safe and can provide ground truth states.
However, there are two caveats. The first regards the “expert" in CARLA, commonly
referred to as the Autopilot (or the roaming agent). The Autopilot has access to ground
truth simulation states, but due to the use of hand-crafted rules, its driving skills are not
comparable to a human expert’s. Secondly, the supervision offered by most automated
experts is not informative. In fact, the IL problem can be seen as a knowledge transfer
problem and just learning from expert actions is inefficient.

To tackle both drawbacks and motivated by the success of model-free RL in Atari games
[178] and continuous control [58], we propose Roach (RL coach), an RL expert that maps
bird’s-eye view (BEV) images to continuous actions (Fig. 2.1 bottom). After training
from scratch for 10M steps, Roach sets the new performance upper-bound on CARLA
by outperforming the Autopilot. We then train IL agents and investigate more effective
training techniques when learning from our Roach expert. Given that Roach uses a
neural network policy, it serves as a better coach for IL agents also based on neural
networks. Roach offers numerous informative targets for IL agents to learn from, which
go far beyond deterministic action provided by other experts. Here we demonstrate

2.2 related work 11

IL Agent

RL Coach

Simulation
Ground Truth

Driver

Expert

Strong
Supervisions

Actions

Actions

Figure 2.1: Roach: RL Coach allows IL agents to benefit from dense and informative on-policy
supervisions.

the effectiveness of using action distributions, value estimations and latent features as
supervisions.

Fig. 2.1 shows the scheme of learning from on-policy supervisions labeled by Roach
on CARLA. We also record off-policy data from Roach by using its output to drive the
vehicle on CARLA. Leveraging 3D detection algorithms [179, 180] and extra sensors to
synthesize the BEV, Roach could also address the scarcity of on-policy supervisions in
the real world. This is feasible because on the one hand, BEV as a strong abstraction
reduces the sim-to-real gap [181], and on the other hand, on-policy labeling does not have
to happen in real-time or even onboard. Hence 3D detection becomes easier given the
complete sequences [182].

In summary, this paper presents Roach, an RL expert that sets a new performance upper-
bound on CARLA. Moreover, we demonstrate the state-of-the-art performance on both
the NoCrash benchmark and the public routes of CARLA LeaderBoard using a single
camera based end-to-end IL agent, which is supervised by Roach using our improved
training scheme. Our repository is available at https://github.com/zhejz/carla-roach

2.2 Related Work

Since our methods are trained and evaluated on CARLA, we mainly focus on related
works also done on CARLA.

https://github.com/zhejz/carla-roach

12 2 roach

End-to-End IL: Dosovitskiy et al. [12] introduced the CARLA driving simulator and
demonstrated that a baseline end-to-end IL method with single camera input can achieve
a performance comparable to a modular pipeline. After that, CIL [30] and CILRS [31]
addressed directional multi-modality in AD by using branched action heads where
the branch is selected by a high-level directional command. While the aforementioned
methods are trained via behavior cloning, DA-RB [32] applied DAGGER [11] with critical
state sampling to CILRS. Most recently, LSD [33] increased the model capacity of CILRS
by learning a mixture of experts and refining the mixture coefficients using evolutionary
optimization. Here, we use DA-RB as the baseline IL agent to be supervised by Roach.

Mid-to-X IL: Directly mapping camera images to low-level actions requires a large amount
of data, especially if one wants generalization to diverse weather conditions. Mid-to-X
approaches alleviate this issue by using more structured intermediate representation as
input and/or output. CILRS with coarse segmentation masks as input was studied in
[36]. CAL [37] combines CIL and direct perception [38] by mapping camera images to
driving affordances which can be directly used by a rule-based low-level controller. LBC
[39] maps camera images to waypoints by mimicking a privileged mid-to-mid IL agent
similar to Chauffeurnet [4], which takes BEV as input and outputs future waypoints.
Similarly, SAM [40] trained a visuomotor agent by imitating a privileged CILRS agent
that takes segmentation and affordances as inputs. Our Roach adopts BEV as the input
representation and predicts continuous low-level actions.

RL: As the first RL agent on CARLA, an A3C agent [59] was demonstrated in [12], yet its
performance is lower than that of other methods presented in the same paper. CIRL [60]
proposed an end-to-end DDPG [55] agent with its actor network pre-trained via behavior
cloning to accelerate online training. To reduce the problem complexity, Chen et al. [61]
investigated DDQN [56], TD3 [57] and SAC [58] using BEV as an input and pre-trained
the image encoder with a variational auto-encoder [183] on expert trajectories. State-of-
the-art performance is achieved in [64] using Rainbow-IQN [62]. To reduce the number
of trainable parameters during online training, its image encoder is pre-trained to predict
segmentation and affordances on an off-policy dataset. IL was combined with RL in [65]
and multi-agent RL on CARLA was discussed in [66]. In contrast to these RL methods,
Roach achieves high sample efficiency without using any expert demonstrations.

IL with Automated Experts: The effectiveness of automated experts was demonstrated
in [47] for real-world off-road racing, where a visuomotor agent is trained by imitating
on-policy actions labeled by a model predictive control expert equipped with expensive
sensors. Although CARLA already comes with the Autopilot, it is still beneficial to
train a proxy expert based on deep neural networks, as shown by LBC [39] and SAM
[40]. Through a proxy expert, the complex to solve end-to-end problem is decomposed
into two simpler stages. At the first stage, training the proxy expert is made easier by
formulating a mid-to-X IL problem that separates perception from planning. At the
second stage, the end-to-end IL agent can learn more effectively from the proxy expert
given the informative targets it supplies. To provide strong supervision signals, LBC
queries all branches of the proxy expert and backpropagates all branches of the IL agent
given one data sample, whereas SAM matches latent features of the proxy expert and
the end-to-end IL agent. While the proxy expert addresses planning, it is also possible
to address perception at the first stage as shown by FM-Net [48]. Overall, two-stage

2.3 method 13

approaches achieve better performance than direct IL, but using proxy experts inevitably
lowers the performance upper-bound as a proxy expert trained via IL cannot outperform
the expert it imitates. This is not a problem for Roach, which is trained via RL and
outperforms the Autopilot.

2.3 Method

In this section we describe Roach and how IL agents can benefit from diverse supervisions
supplied by Roach.

2.3.1 RL Coach

Our Roach has three features. Firstly, in contrast to previous RL agents, Roach does not
depend on data from other experts. Secondly, unlike the rule-based Autopilot, Roach is
end-to-end trainable, hence it can generalize to new scenarios with minor engineering
efforts. Thirdly, it has a high sample efficiency. Using our proposed input/output
representation and exploration loss, training Roach from scratch to achieve top expert
performance on the six LeaderBoard maps takes less than a week on a single GPU
machine.

Roach consists of a policy network πθ(a|iRL, mRL) parameterized by θ and a value
network Vϕ(iRL, mRL) parameterized by ϕ. The policy network maps a BEV image iRL
and a measurement vector mRL to a distribution of actions a. Finally the value network
estimates a scalar value v, while taking the same inputs as the policy network.

Input Representation: We use a BEV semantic segmentation image iRL ∈ [0, 1]W×H×C

to reduce the problem complexity, similar to the one used in [4, 39, 61]. It is rendered
using ground-truth simulation states and consists of C grayscale images of size W × H.
The ego-vehicle is heading upwards and is centered in all images at D pixels above the
bottom, but it is not rendered. Fig. 2.2 illustrates each channel of iRL. Drivable areas and
intended routes are rendered respectively in Fig. 2.2a and 2.2b. In Fig. 2.2c solid lines are
white and broken lines are grey. Fig. 2.2d is a temporal sequence of K grayscale images in
which cyclists and vehicles are rendered as white bounding boxes. Fig. 2.2e is the same
as Fig. 2.2d but for pedestrians. Similarly, stop lines at traffic lights and trigger areas of
stop signs are rendered in Fig. 2.2f. Red lights and stop signs are colored by the brightest
level, yellow lights by an intermediate level and green lights by a darker level. A stop
sign is rendered if it is active, i.e. the ego-vehicle enters its vicinity and disappears once
the ego-vehicle has made a full stop. By letting the BEV representation memorize if the
ego-vehicle has stopped, we can use a network architecture without recurrent structure
and hence reduce the model size of Roach. A colored combination of all channels is
visualized in Fig. 2.1. We also feed Roach a measurement vector mRL ∈ R6 containing
the states of the ego-vehicle not represented in the BEV, these include ground-truth
measurements of steering, throttle, brake, gear, lateral and horizontal speed.

Output Representation: Low-level actions of CARLA are steering ∈ [−1, 1], throttle ∈
[0, 1] and brake ∈ [0, 1]. An effective way to reduce the problem complexity is predicting

14 2 roach

(a) Drivable areas (b) Desired route (c) Lane boundaries

(d) Vehicles (e) Pedestrians (f) Lights and stops

Figure 2.2: The BEV representation used by our Roach.

waypoint plans which are then tracked by a PID-controller to produce low-level actions
[39, 65]. However, a PID-controller is not reliable for trajectory tracking and requires
excessive parameter tuning. A model-based controller would be a better solution, but
CARLA’s vehicle dynamics model is not directly accessible. To avoid parameter tuning
and system identification, Roach directly predicts action distributions. Its action space
is a ∈ [−1, 1]2 for steering and acceleration, where positive acceleration corresponds
to throttle and negative corresponds to brake. To describe actions we use the Beta
distribution B(α, β), where α, β > 0 are respectively the concentration on 1 and 0.
Compared to the Gaussian distribution, which is commonly used in model-free RL,
the support of the Beta distribution is bounded, thus avoiding clipping or squashing to
enforce input constraints. This results in a better behaved learning problem since no tanh
layers are needed and the entropy and KL-divergence can be computed explicitly. Further,
the modality of the Beta distribution is also suited for driving, where extreme maneuvers
may often be taken, for example, emergency braking or taking a sharp turn.

Training: We use proximal policy optimization (PPO) [172] with clipping to train the
policy network πθ and the value network Vϕ. To update both networks, we collect
trajectories by executing πθk on CARLA. A trajectory τ = {(iRL,k, mRL,k, ak, rk)

T
k=0, z}

includes BEV images iRL, measurement vectors mRL, actions a, rewards r and a terminal

2.3 method 15

event z ∈ Z that triggers the termination of an episode. The value network is trained to
regress the expected returns, whereas the policy network is updated via

θk+1 = arg max
θ

E
τ∼πθk

[
Lppo + Lent + Lexp

]
.

The first objective Lppo is the clipped policy gradient loss with advantages estimated
using generalized advantage estimation [184]. The second objective Lent is a maximum
entropy loss commonly employed to encourage exploration

Lent = −λent ·H (πθ(·|iRL, mRL)) .

Intuitively Lent pushes the action distribution towards a uniform prior because maximiz-
ing entropy is equivalent to minimizing the KL-divergence to a uniform distribution,

H (πθ) = −KL (πθ ∥ U (−1, 1)) ,

if both distributions share the same support. This inspires us to propose a generalized
form of Lent, which encourages exploration in sensible directions that comply with basic
traffic rules. We call it the exploration loss and define it as

Lexp = λexp · 1{T−Nz+1,...,T}(k) ·KL(πθ(·|iRL,k , mRL,k) ∥ pz) ,

where 1 is the indicator function and z ∈ Z is the event that ends the episode. The
terminal condition set Z includes collision, running traffic light/sign, route deviation
and being blocked. Unlike Lent which imposes a uniform prior on the actions at all time
steps regardless of which z is triggered, Lexp shifts actions within the last Nz steps of an
episode towards a predefined exploration prior pz which encodes an “advice” to prevent
the triggered event z from happening again. In practice, we use Nz = 100, ∀z ∈ Z . If
z is related to a collision or running traffic light/sign, we apply pz = B(1, 2.5) on the
acceleration to encourage Roach to slow down while the steering is unaffected. In contrast,
if the car is blocked we use an acceleration prior B(2.5, 1). For route deviations, a uniform
prior B(1, 1) is applied on the steering. Despite being equivalent to maximizing entropy
in this case, the exploration loss further encourages exploration on steering angles during
the last 10 seconds before the route deviation.

Implementation Details: Our implementation of PPO-clip is based on [185] and the
network architecture is illustrated in Fig. 2.3a. We use six convolutional layers to encode
the BEV and two fully-connected (FC) layers to encode the measurement vector. Outputs
of both encoders are concatenated and then processed by another two FC layers to
produce a latent feature jRL, which is then fed into a value head and a policy head, each
with two FC hidden layers. Trajectories are collected from six CARLA servers at 10 FPS,
each server corresponds to one of the six LeaderBoard maps. At the beginning of each
episode, a pair of start and target location is randomly selected and the desired route
is computed using the A∗ algorithm. Once the target is reached, a new random target
will be chosen, hence the episode is endless unless one of the terminal conditions in
Z is met. We use the reward of [62] and additionally penalize large steering changes
to prevent oscillating maneuvers. To avoid infractions at high speed, we add an extra
penalty proportional to the ego-vehicle’s speed. More details are in the appendix.

16 2 roach

Image
Encoder

Measurement
Encoder

Action
Head

Value
Head

F
C

 Layers

(a) Roach

Image
Encoder

Measurement
Encoder

Command

Action
Head

Speed
Head

F
C

 Layers

Action
Head

Speed
Head

(b) CILRS

Figure 2.3: Network architecture of Roach, the RL expert, and CILRS, the IL agent.

2.3.2 IL Agents Supervised by Roach

To allow IL agents to benefit from the informative supervisions generated by Roach, we
formulate a loss for each of the supervisions. Our training scheme using Roach can
be applied to improve the performance of existing IL agents. Here we use DA-RB [32]
(CILRS [31] + DAGGER [11]) as an example to demonstrate its effectiveness.

CILRS: The network architecture of CILRS is illustrated in Fig. 2.3b, it includes a
perception module that encodes the camera image iIL and a measurement module that
encodes the measurement vector mIL. Outputs of both modules are concatenated and
processed by FC layers to generate a bottleneck latent feature jIL. Navigation instructions
are given as discrete high-level commands and for each kind of command a branch is
constructed. All branches share the same architecture, while each branch contains an
action head predicting continuous actions a and a speed head predicting the current
speed s of the ego-vehicle. The latent feature jIL is processed by the branch selected by
the command. The imitation objective of CILRS consists of an L1 action loss

LA = ∥â− a∥1

and a speed prediction regularization

LS = λS · |ŝ− s| ,

2.3 method 17

where λs is a scalar weight, â is the expert’s action, ŝ is the measured speed, a and s are
action and speed predicted by CILRS. Expert actions â may come from the Autopilot,
which directly outputs deterministic actions, or from Roach, where the distribution mode
is taken as the deterministic output. Besides deterministic actions, Roach also predicts
action distributions, values and latent features. Next we will formulate a loss function for
each of them.

Action Distribution Loss: Inspired by [186] which suggests soft targets may provide
more information per sample than hard targets, we propose a new action loss based on
the action distributions as a replacement for LA. The action head of CILRS is modified to
predict distribution parameters and the loss is formulated as a KL-divergence

LK = KL(π̂∥π)

between the action distribution π̂ predicted by the Roach expert and π predicted by the
CILRS agent.

Feature Loss: Feature matching is an effective way to transfer knowledge between
networks and its effectiveness in supervising IL driving agents is demonstrated in [40,
48]. The latent feature jRL of Roach is a compact representation that contains essential
information for driving as it can be mapped to expert actions using an action head
consists of only two FC layers (cf. Fig. 2.3a). Moreover, jRL is invariant to rendering and
weather as Roach uses the BEV representation. Learning to embed camera images to the
latent space of jRL should help IL agents to generalize to new weather and new situations.
Hence, we propose the feature loss

LF = λF · ∥jRL − jIL∥2
2 .

Value Loss: Multi-task learning with driving-related side tasks could also boost the
performance of end-to-end IL driving agents as shown in [175], which used scene
segmentation as a side task. Intuitively, the value predicted by Roach contains driving
relevant information because it estimates the expected future return, which relates to
how dangerous a situation is. Therefore, we augment CILRS with a value head and
regress value as a side task. The value loss is the mean squared error between v̂, the value
estimated by Roach, and v, the value predicted by CILRS,

LV = λV · (v̂− v)2 .

Implementation Details: Our implementation follows DA-RB [32]. We choose a Resnet-34
pretrained on ImageNet as the image encoder to generate a 1000-dimensional feature
given iRL ∈ [0, 1]900×256×3, a wide-angle camera image with a 100◦ horizontal FOV.
Outputs of the image and the measurement encoder are concatenated and processed by
three FC layers to generate jIL ∈ R256, which shares the same size as jRL. More details
are found in the appendix.

18 2 roach

2.4 Experiments

Benchmarks: All evaluations are completed on CARLA 0.9.11. We evaluate our methods
on the NoCrash [31] and the offline LeaderBoard benchmark1 [187]. Each benchmark
specifies its training towns and weather, where the agent is allowed to collect data, and
evaluates the agent in new towns and weather. The NoCrash benchmark considers
generalization from Town 1, a European town composed of solely one-lane roads and
T-junctions, to Town 2, a smaller version of Town 1 with different textures. By contrast,
the LeaderBoard considers a more difficult generalization task in six maps that cover
diverse traffic situations, including freeways, US-style junctions, roundabouts, stop signs,
lane changing and merging. Following the NoCrash benchmark, we test generalization
from four training weather types to two new weather types. But to save computational
resources, only two out of the four training weather types are evaluated. The NoCrash
benchmark comes with three levels of traffic density (empty, regular and dense), which
defines the number of pedestrians and vehicles in each map. We focus on the NoCrash-
dense and introduce a new level between regular and dense traffic, NoCrash-busy, to avoid
congestion that often appears in the dense traffic setting. For the offline LeaderBoard the
traffic density in each map is tuned to be comparable to the busy traffic setting.

Metrics: Our results are reported in success rate, the metric proposed by NoCrash, and
driving score, a new metric introduced by the CARLA LeaderBoard. The success rate is
the percentage of routes completed without collision or blockage. The driving score is
defined as the product of route completion, the percentage of route distance completed,
and infraction penalty, a discount factor that aggregates all triggered infractions. For
example, if the agent ran two red lights in one route and the penalty coefficient for
running one red light was 0.7, then the infraction penalty would be 0.72=0.49. Compared
to the success rate, the driving score is a fine-grained metric that considers more kinds of
infractions and it is better suited to evaluate long-distance routes. More details about the
benchmarks and the complete results are found in the appendix.

2.4.1 Performance of Experts

We use CARLA 0.9.10.1 to train RL experts and fine-tune our Autopilot, yet all evaluations
are still on 0.9.11.

Sample Efficiency: To improve the sample efficiency of PPO, we propose to use BEV
instead of camera images, Beta instead of Gaussian distributions, and the exploration
loss in addition to the entropy loss. Since the benefit of using a BEV representation is
obvious, here we only ablate the Beta distribution and the exploration loss. As shown in
Fig. 2.4, the baseline PPO with Gaussian distribution and entropy loss is trapped in a local
minimum where staying still is the most rewarding strategy. Leveraging the exploration
loss, PPO+exp can be successfully trained despite relatively high variance and low sample
efficiency. The Beta distribution helps substantially, but without the exploration loss the
training still collapsed in some cases due to insufficient exploration (cf. dashed blue line

1 In contrast to the Leaderboard online ranking, this benchmark is evaluated offline on the Leaderboard public routes (50
training, 26 testing).

2.4 experiments 19

Figure 2.4: Learning curves of RL experts trained in CARLA Town 1-6. Solid lines show the mean
and shaded areas show the standard deviation of episode returns across 3 seeds. The dashed line
shows an outlier run that collapsed.

in Fig. 2.4). Our Roach (PPO+beta+exp) uses both Beta distribution and exploration loss
to ensure stable and sample efficient training. The training takes around 1.7M steps in
each of the six CARLA servers, this accounts for 10M steps in total, which takes roughly
a week on an AWS EC2 g4dn.4xlarge or 4 days on a 2080 Ti machine with 12 cores.

Driving Performance: Table 2.1 compares different experts on the NoCrash-dense and on
all 76 LeaderBoard routes under dynamic weather with busy traffic. Our Autopilot is a
strong baseline expert that achieves a higher success rate than the Autopilot used in LBC
and DA-RB. We evaluate three RL experts - (1) Roach, the proposed RL coach using Beta
distribution and exploration prior. (2) PPO+beta, the RL coach trained without using the
exploration prior. (3) PPO+exp, the RL coach trained without using the Beta distribution.
In general, our RL experts achieve comparable success rates and higher driving scores
than Autopilots because RL experts handle traffic lights in a better way (cf. Table 2.3).
The two Autopilots often run red lights because they drive over-conservatively and wait
too long at the junction, thus missing the green light. Among RL experts, PPO+beta and
Roach, the two RL experts using a Beta distribution, achieve the best performance, while
the difference between both is not significant. PPO+exp performs slightly worse, but it
still achieves better driving scores than our Autopilot.

2.4.2 Performance of IL Agents

The performance of an IL agent is limited by the performance of the expert it is imitating.
If the expert performs poorly, it is not sensible to compare IL agents imitating that expert.
As shown in Table 2.1, this issue is evident in the NoCrash new town with dense traffic,
where Autopilots do not perform well. To ensure a high performance upper-bound and
hence a fair comparison, we conduct ablation studies (Fig. 2.5 and Table 2.3) under the

20 2 roach

Suc. Rate % ↑ NCd-tt NCd-tn NCd-nt NCd-nn LB-all

PPO+exp 86± 6 86± 6 79± 6 77± 5 67± 3

PPO+beta 95± 3 95± 3 83± 5 87± 6 72± 5

Roach 91± 4 90± 7 83± 3 83± 3 72± 6

AP (ours) 95± 3 95± 3 83± 5 81± 2 75± 8

AP-lbc [39] 86± 3 83± 6 60± 3 59± 8 N/A

AP-darb [32] 71± 4 72± 3 41± 2 43± 2 N/A

Dri. Score % ↑ NCd-tt NCd-tn NCd-nt NCd-nn LB-all

PPO+exp 92± 2 92± 2 88± 3 86± 1 83± 0

PPO+beta 98± 2 98± 2 90± 3 92± 2 86± 2

Roach 95± 2 95± 3 91± 3 90± 2 85± 3

AP (ours) 86± 2 86± 2 70± 2 70± 1 78± 3

Table 2.1: Success rate and driving score of experts. Mean and standard deviation over 3 evaluation
seeds. NCd: NoCrash-dense. tt: train town & weather. tn: train town & new weather. nt: new
town & train weather. nn: new town & weather. LB-all: all 76 routes of LeaderBoard with dynamic
weather. AP: CARLA Autopilot. For RL experts the best checkpoint among all training seeds and
runs is used.

busy traffic setting such that our Autopilot can achieve a driving score of 80% and a
success rate of 90%. In order to compare with the state-of-the-art, the best model from
the ablation studies is still evaluated on NoCrash with dense traffic in Table 2.2.

The input measurement vector mIL is different for the NoCrash and for the LeaderBoard.
For NoCrash, mIL is just the speed. For the LeaderBoard, mIL contains additionally a
2D vector pointing to the next desired waypoint. This vector is computed from noisy
GPS measurements and the desired route is specified as sparse GPS locations. The
LeaderBoard instruction suggests that it is used to disambiguate situations where the
semantics of left and right are not clear due to the complexity of the considered map.

Ablation: Fig. 2.5 shows driving scores of experts and IL agents at each DAGGER
iteration on NoCrash and offline LeaderBoard with busy traffic. The baseline LA(AP)
is our implementation of DA-RB+ supervised by our Autopilot. Given our improved
Autopilot, it is expected that LA(AP) can achieve higher success rates than those reported
in the DA-RB paper, but this is not observed in Table 2.2. The large performance gap
between the Autopilot and LA(AP) (cf. Fig. 2.5), especially while generalizing to a new
town and new weather, indicates the limitation of this baseline.

By replacing the Autopilot with Roach, LA performs better overall than LA(AP). Further
learning from the action distribution, LK generalizes better than LA on the NoCrash but
not on the offline LeaderBoard. Feature matching only helps when jIL is provided with
the necessary information needed to reproduce jRL. In our case, jRL contains navigational
information as the desired route is rendered in the BEV input. For the LeaderBoard,

2.4 experiments 21

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.2

0.4

0.6

0.8

1.0

Dr
iv

in
g

Sc
or

e

NoCrash busy: Train Town & Train Weather

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.2

0.4

0.6

0.8

1.0

Dr
iv

in
g

Sc
or

e

NoCrash busy: New Town & New Weather

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.2

0.4

0.6

0.8

Dr
iv

in
g

Sc
or

e

LeaderBoard: Train Town & Train Weather

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.2

0.4

0.6

0.8

Dr
iv

in
g

Sc
or

e

LeaderBoard: New Town & New Weather

Autopilot
Roach

A(AP)
A

K
K + V

K + F
K + V + F

K + F(c)
K + V + F(c)

Figure 2.5: Driving score of experts and IL agents. All IL agents (dashed lines) are supervised by
Roach except for LA(AP), which is supervised by our Autopilot. For IL agents at the 5th iteration
on NoCrash and all experts, results are reported as the mean over 3 evaluation seeds. Others are
evaluated with one seed. The offline Leaderboard benchmark is used here.

22 2 roach

Success Rate % ↑ NCd-tt NCd-tn NCd-nt NCd-nn

LBC [39] (0.9.6) 71± 5 63± 3 51± 3 39± 6

SAM [40] (0.8.4) 54± 3 47± 5 29± 3 29± 2

LSD [33] (0.8.4) N/A N/A 30± 4 32± 3

DA-RB+(E) [32] 66± 5 56± 1 36± 3 35± 2

DA-RB+ [32] (0.8.4) 62± 1 60± 1 34± 2 25± 1

Our baseline, LA(AP) 88± 4 29± 3 32± 11 28± 4

Our best, LK + LF(c) 86± 5 82± 2 78± 5 78± 0

Table 2.2: Success rate of camera-based end-to-end IL agents on NoCrash-dense. Mean and
standard deviation over 3 seeds. Our models are from DAGGER iteration 5. For DA-RB, + means
triangular perturbations are added to the off-policy dataset, (E) means ensemble of all iterations.

Success rate Driving score Route compl Infrac. penalty

iter 5 %, ↑ %, ↑ %, ↑ %, ↑

LA(AP) 31± 7 43± 2 62± 6 77± 4

LA 57± 7 66± 3 84± 3 76± 1

LK 74± 3 79± 0 91± 2 86± 1

LK + LF(c) 87± 5 88± 3 96± 0 91± 3

Roach 95± 2 96± 3 100± 0 96± 3

Autopilot 91± 1 79± 2 98± 1 80± 2

Collision

others

Collision

pedestrian

Collision

vehicle

Red light

infraction

Agent

blocked

iter 5 #/Km, ↓ #/Km, ↓ #/Km, ↓ #/Km, ↓ #/Km, ↓

LA(AP) 0.54± 0.53 0± 0 0.63± 0.50 3.33± 0.58 19.4± 14.4

LA 2.07± 1.37 0± 0 1.36± 1.10 1.4± 0.2 2.82± 1.45

LK 0.50± 0.25 0± 0 0.53± 0.18 0.68± 0.08 3.39± 0.20

LK + LF(c) 0.08± 0.04 0.01± 0.02 0.23± 0.08 0.61± 0.23 0.84± 0.04

Roach 0± 0 0.11± 0.07 0.04± 0.05 0.16± 0.20 0± 0

Autopilot 0± 0 0± 0 0.18± 0.08 1.93± 0.23 0.18± 0.08

Table 2.3: Driving performance and infraction analysis of IL agents on NoCrash-busy, new town
& new weather. Mean and standard deviation over 3 evaluation seeds.

2.5 conclusion 23

navigational information is partially encoded in mIL, which includes the vector to the
next desired waypoint, so better performance is observed by using LF. But for NoCrash
this information is missing as mIL is just the speed, hence it is impractical for jIL to mimic
jRL and this causes the inferior performance of LK + LF and LK + LF + LV. To confirm
this hypothesis, we evaluate a single-branch network architecture where the measurement
vector mIL is augmented by the command encoded as a one-hot vector. Using feature
matching with this architecture, LK +LF(c) and LK +LV +LF(c) achieve the best driving
score among IL agents in the NoCrash new town & weather generalization test, even
outperforming the Autopilot.

Using value supervision in addition to feature matching helps the DAGGER process to
converge faster as shown by LK + LV + LF and LK + LV + LF(c). However, without
feature matching, using value supervision alone LK + LV does not demonstrate superior
performance. This indicates a potential synergy between feature matching and value
estimation. Intuitively, the latent feature of Roach encodes the information needed for
value estimation, hence mimicking this feature should help to predict the value, while
value estimation could help to regularize feature matching.

Comparison with the State-of-the-art: In Table 2.2 we compare the baseline LA(AP) and
our best performing agent LK + LF(c) with the state-of-the-art on the NoCrash-dense
benchmark. Our LA(AP) performs comparably to DA-RB+ except when generalizing to
the new weather, where there is an incorrect rendering of after-rain puddles on CARLA
0.9.11 (see appendix for visualizations). This issue does not affect our best method
LK +LF(c) due to the stronger supervision of Roach. By mimicking the weather-agnostic
Roach, the performance of our IL agent drops by less than 10% while generalizing to
the new town and weather. Hence if the Autopilot is considered the performance upper-
bound, it is fair to claim our approach saturates the NoCrash benchmark. However, as
shown in Fig. 2.5, there is still space for improvement on NoCrash compared to Roach
and the performance gap on the offline LeaderBoard highlights the importance of this
new benchmark.

Performance and Infraction Analysis: Table 2.3 provides the detailed performance
and infraction analysis on the NoCrash benchmark with busy traffic in the new town
& weather setting. Most notably, the extremely high “Agent blocked” of our baseline
LA(AP) is due to reflections from after-rain puddles. This problem is largely alleviated
by imitating Roach, which drives more naturally, and LA shows an absolute improvement
of 23% in terms of driving score. In other words this is the gain achieved by using a
better expert, but the same imitation learning approach. Further using the improved
supervision from soft targets and latent features results in our best model LK + LF(c),
which demonstrates another 22% absolute improvement. By handling red lights in a
better way, this agent achieves 88%, an expert-level driving score, using a single camera
image as input.

2.5 Conclusion

We present Roach, an RL expert, and an effective way to imitate this expert. Using
the BEV representation, Beta distribution and the exploration loss, Roach sets the new

24 2 roach

performance upper-bound on CARLA while demonstrating high sample efficiency. To
enable a more effective imitation, we propose to learn from soft targets, values and
latent features generated by Roach. Supervised by these informative targets, a baseline
end-to-end IL agent using a single camera image as input can achieve state-of-the-art
performance, even reaching expert-level performance on the NoCrash-dense benchmark.
Future works include performance improvement on simulation benchmarks and real-
world deployment. To saturate the LeaderBoard, the model capacity shall be increased
[4, 33, 188]. To apply Roach to label real-world on-policy data, several sim-to-real gaps
have to be addressed besides the photorealism, which is partially alleviated by the BEV.
For urban driving simulators, the realistic behavior of road users is of utmost importance
[18].

2.a summary 25

Appendices

2.A Summary

In the appendix, we provide (1) an overview of supplementary videos and codes, (2) im-
plementation details of the RL experts and the IL agents, (3) details regarding benchmarks,
and (4) additional experimental results.

2.B Other Supplementary Materials

2.B.1 Videos

To investigate how different agents actually drive, we provide three videos. roach.mp4
shows the driving performance of Roach, and highlights that it has a natural driving
style and that it can handle complex traffic scenes. In autopilot.mp4 we demonstrate
the rule-based CARLA Autopilot. This agent uses unnatural brake actuation, i.e. it only
uses emergency braking. Further, this video also highlights that in dense traffic, the
rule-based agent can get stuck due to conservative danger predictions. For more details
about the Autopilot and changes we made see Section 2.C.3. Finally, in il_agent.mp4
we demonstrate our best roach-supervised IL agent, showing that the agent can handle
complex traffic scenes but also highlighting failure cases. In detail:

• roach.mp4 is an uncut evaluation run recorded from Roach driving in Town03
(LeaderBoard-busy under dynamic weather). This video demonstrates the natural
driving style of Roach even in challenging situations such as US-style traffic lights,
unprotected left turns, roundabouts and stop signs.

• autopilot.mp4 is an uncut evaluation run recorded from Autopilot driving in
Town02 (NoCrash-dense, new town & new weather). This video demonstrates the
over-conservative behavior of the Autopilot while driving in dense traffic. This
often leads to red light infractions and blockage (both are present in the video).

• il_agent.mp4 is a highlight video recorded from our best roach-supervised IL agent
LK + LF(c). This video includes multiple challenging situations often encountered
during urban driving, such as EU and US-style junctions, unprotected left turns,
roundabouts and reacting to pedestrians walking into the street. Furthermore, we
highlight some of the failure modes of our camera-based IL agent, including not
coming to a full stop for stop signs, collisions at overcrowded intersections and
oscillation in the steering if the lane markings are not visible due to sun glare. We
believe that including memory in the IL agent policy can help in most of these
issues, due to a better understanding of the ego-motion (stop sign and oscillations)
and other agents’ motion (collisions).

26 2 roach

2.B.2 Code

To reproduce our results, we provide four python scripts:

• train_rl.py for training Roach.

• train_il.py for training DA-RB (CILRS + DAGGER).

• benchmark.py for benchmarking agents.

• data_collect.py for collecting on/off-policy data.

It is recommended to run our scripts through bash files contained in the folder run. All
configurations are in the folder config. Our repository is composed of two modules:

• carla_gym, a versatile OpenAI gym [189] environment for CARLA. It allows not only
RL training with synchronized rollouts, but also data collection and evaluation. The
environment is configurable in terms of weather, number of background pedestrians
and vehicles, benchmarks, terminal conditions, sensors, rewards for the ego-vehicle
and etc.

• agents, which includes our implementation of Autopilot (in agents/expert), Roach (in
agents/rl_birdview) and DA-RB (in agents/cilrs).

2.B.3 Rendering issues

As illustrated in Fig. 2.6, on CARLA 0.9.11 reflections from after-rain puddles are some-
times wrongly rendered as black pixels. When the black pixels are accumulated, for
example in the middle of Fig. 2.6a, they are often recognized as obstacles by the camera-
based agents. Since this kind of reflection only appears under the testing weather but
not under the training weather, generalizing to testing weather is exceptionally hard on
CARLA 0.9.11 for the camera-based end-to-end IL agents.

2.C Implementation Details

2.C.1 Roach

The network architecture of Roach can be found in Table 2.4 and the hyper-parameter
values are listed in Table 2.5.

BEV: Cyclists and pedestrians are rendered larger than their actual sizes, this allows us
to use a smaller image encoder with less parameters for Roach. Additionally, increasing
the size naturally adds some caution when dealing with these vulnerable road users.

Update: The policy network and the value network are updated together using one
Adam optimizer with an initial learning rate of 1e-5. The learning rate is scheduled based
on the empirical KL-divergence between the policy before and after the update. If the
KL-divergence is too large after an update epoch, the update phase will be interrupted

2.c implementation details 27

(a) Reflections from after-rain puddles in front of the ego-vehicle are incorrectly rendered as black pixels.

(b) Reflections are correctly rendered if the puddle is not directly in front of the ego-vehicle.

Figure 2.6: Rendering issue of CARLA 0.9.11 running on Ubuntu with OpenGL.

and a new rollout phase will start. Furthermore, a patience counter will be increased by
one and the learning rate will be reduced once the patience counter reaches a threshold.

Rollout: Before each update phase a fixed-size buffer will be filled with trajectories
collected on six CARLA servers, each corresponds to one of the six LeaderBoard maps
(Town1-6).

Terminal Condition: An episode is terminated if and only if one of the following event
happens.

• Run red light: examination code taken from the public repository of LeaderBoard.
Terminal reward: −1− s.

• Run stop sign: examination code taken from the public repository of LeaderBoard.
Terminal reward: −1− s.

• Collision registered by CARLA: based on the physics engine. Any collision with
intensity larger than 0 is considered. Terminal reward: −1− s.

• Collision detected by bounding box overlapping in the BEV. Terminal reward:
−1− s.

• Route deviation: triggered if the lateral distance to the lane centerline of the desired
route is larger than 3.5 meters. Terminal reward: −1.

• Blocked: speed of the ego-vehicle is slower than 0.1 m/s for more than 90 consecu-
tive seconds. Terminal reward: −1.

with s is the ego-vehicle’s speed. The terminal reward is the reward given to the very last
observation/action pair before the termination. For non-terminal samples, the terminal
reward is 0.

28 2 roach

Reward Shaping: The reward is the sum of the following components.

• r_speed: equals to 1.0− |s− sdesired|/smax, where s is the measured speed of the
ego-vehicle, smax is the maximum speed and sdesired is the desired speed. We use
a constant maximum speed smax = 6 m/s. The desired speed is a variable and is
explained below.

• r_position: equals to −0.5∆p, where ∆p is the lateral distance (in meters) between
the ego-vehicle’s center and the center line of the desired route.

• r_rotation: equals to −∆r, where ∆r is the absolute value of the angular difference
(in radians) between the ego-vehicle’s heading and the heading of the center line of
the desired route.

• r_action: equals to −0.1 if the current steering differs more than 0.01 from the
steering applied in the previous step.

• r_terminal: the aforementioned terminal reward.

The desired speed, as proposed in [62], depends on rule-based obstacle detections. If
there’s no obstacle detected, the desired speed equals to the maximum speed. If an
obstacle is detected, based on the distance to the obstacle the desired speed is linearly
decreased to 0. As obstacle detector we use the hazard detection of Autopilot (cf. Section
2.C.3). As a dense and informative reward, r_speed helps substantially to train our Roach
and the camera-based end-to-end RL agent [62]. However, using rule-based obstacle
detections inevitable introduces bias, the trained RL agent can be over-aggressive or
over-conservative depending on the false positive and false negative rate of the detector.
For example, during multi-lane freeway driving, our Roach decelerates for vehicles on
the neighboring lanes because those vehicles are detected as obstacles during training.
Another example, Roach tends to collide after a right turn, this is related to the sector
shaped (around 40 degrees) detection area used by the obstacle detection; vehicles and
pedestrians on the right are not covered in the detection area. To further improve the
performance of Roach, this r_speed should be modified, either using a better obstacle
detector, or completely remove the rule-based obstacle detection, and build a less artificial
reward based on simulation states.

Mode of Beta Distribution: We take the distribution mode as a deterministic output.
The mode of the Beta distribution B(α, β) is defined as

M =

α−1
α+β−2 if α > 1, β > 1

0 if α ≤ 1, β > 1

1 if α > 1, β ≤ 1

bimodal {0, 1} if α < 1, β < 1

any value in [0, 1] if α = 1, β = 1

For a natural driving behavior, we use the mean α
α+β as the deterministic output when

the mode is not uniquely defined, i.e. when α < 1, β < 1 or α = 1, β = 1.

2.c implementation details 29

Layer Type Filters Size Strides Activation

Image Encoder

Conv2d 8 5x5 2 ReLU

Conv2d 16 5x5 2 ReLU

Conv2d 32 5x5 2 ReLU

Conv2d 64 3x3 2 ReLU

Conv2d 128 3x3 2 ReLU

Conv2d 256 3x3 1 -

Flatten

Measurement Encoder

Dense 256 ReLU

Dense 256 ReLU

FC Layers after Concatenation

Dense 512 ReLU

Dense 256 ReLU

Action Head

Dense (shared) 256 ReLU

Dense (shared) 256 ReLU

Dense (for α) 2 Softplus

Dense (for β) 2 Softplus

Value Head

Dense 256 ReLU

Dense 256 ReLU

Dense 1 -

Table 2.4: The network architecture used for Roach. Around 1.53M trainable parameters.

30 2 roach

Notation Description Value

BEV Representation

W Width 192 px

H Height 192 px

C Number of channels 15

K Size of the temporal sequence 4

Timestamps of images in the temporal sequence {-1.5, -1, -0.5, 0} sec

D Distance from the ego-vehicle to the bottom 40 px

Pixels per meter 5 px/m

Minimum width/height of rendered bounding boxes 8 px

Scale factor for bounding box size of pedestrians 2

Rollout

Buffer size for six environments 12288 frames

Value bootstrap for the last non-terminal sample True

Synchronized True

Reset at the beginning of a new phase False

Weather dynamic

Range of vehicle/pedestrian number in Town 1 [0, 150]/[0, 300]

Range of vehicle/pedestrian number in Town 2 [0, 100]/[0, 200]

Range of vehicle/pedestrian number in Town 3 [0, 120]/[0, 120]

Range of vehicle/pedestrian number in Town 4 [0, 160]/[0, 160]

Range of vehicle/pedestrian number in Town 5 [0, 160]/[0, 160]

Range of vehicle/pedestrian number in Town 6 [0, 160]/[0, 160]

Update

Number of epochs 20

λent Weight for the entropy loss 0.01

λexp Weight for the exploration loss 0.05

Weight for value loss 0.5

γ for GAE 0.99

λ for GAE 0.9

Clipping range for PPO-clip 0.2

Max norm for gradient clipping 0.5

Batch size 256

Initial learning rate 1e-5

2.c implementation details 31

KL-divergence threshold for learning rate schedule 0.15

Patience for learning rate schedule 8

Factor for learning rate schedule 0.5

Table 2.5: The hyper-parameter values used for Roach.

2.C.2 IL Agent Supervised by Roach

The network architecture of our IL agent is found in Table 2.6 and the hyper-parameter
values are listed in Table 2.7.

Network Architecture: We use six branches: turning left, turning right and going straight
at the junction, following lane, changing to the left lane and changing to the right lane.

Off-policy Data Collection: Following CILRS [31], triangular perturbations on actions
are applied while collecting the off-policy expert dataset to alleviate the covariate shift.
The off-policy dataset for NoCrash includes 80 episodes and for LeaderBoard it includes
160 episodes. Each episode is at most 300 seconds and at least 30 seconds long. The
episode will be terminated if the expert violates any traffic rules, including red light
infractions, stop sign infractions and collisions. In such a case, we remove the last 30
seconds of that episode so as to ensure that the off-policy dataset includes only correct
demonstrations. Data is not collected using the given training routes but from randomly
spawned start and target locations.

On-policy Data Collection: We follow DA-RB [32] for DAGGER with critical state
sampling and replay buffer. New DAGGER-data will replace the old data in the replay
buffer, while the buffer size is fixed. The same number of frames are contained in the
replay buffer as in the off-policy dataset. At each DAGGER iteration, around 15-25% of the
replay buffer is filled with new DAGGER-data, whereas at least 20% of the replay buffer
is filled with off-policy data. Identical to the off-policy data collection, we use randomly
spawned start and target locations while collecting DAGGER datasets. Following DA-RB,
we did not use a mixed agent/expert policy to collect DAGGER datasets. However, our
code allows this kind of rollout for DAGGER.

Training Details: Since we take the ResNet-34 pre-trained on ImageNet, the input image
is normalized as suggested. In case the IL agent uses a distributional action head and/or
a value head, the corresponding weights will be loaded from the Roach model at the first
training iteration (the behavior cloning iteration). At each DAGGER iteration, the training
continuous from the last epoch of the previous DAGGER iteration. We apply image
augmentations using code modified from CILRS. The image augmentation methods are
applied in random order and include Gaussian blur, additive Gaussian noise, coarse
and block-wise dropouts, additive and multiplicative noise to each channel, randomized
contrast and grayscale. All models are trained for 25 epochs using the ADAM optimizer
with an initial learning rate of 2e-4. The learning rate is halved if the validation loss has
not decreased for more than 5 epochs.

32 2 roach

Layer Type Filters Activation Dropout

Image Encoder

ResNet-34

Measurement Encoder

Dense 128 ReLU

Dense 128 ReLU

FC Layers after concatenation

Dense 512 ReLU

Dense 512 ReLU

Dense 256 ReLU

Speed Head

Dense 256 ReLU

Dense 256 ReLU 0.5

Dense 1

Value Head

Dense 256 ReLU

Dense 256 ReLU 0.5

Dense 1

Deterministic Action Head

Dense 256 ReLU

Dense 256 ReLU 0.5

Dense 2

Distributional Action Head

Dense (shared) 256 ReLU

Dense (shared) 256 ReLU 0.5

Dense (for α) 2 Softplus

Dense (for β) 2 Softplus

Table 2.6: The network architecture used for our IL agent. Around 23.4M trainable parameters.

2.c implementation details 33

Description Value

Inputs

Camera type RGB

Camera image width 900 px

Camera image height 256 px

Camera [x, y, z] relative to the ego-veh. [−1.5, 0, 2]

Camera [roll, pitch, yaw] relative to the ego-veh. [0, 0, 0]

Camera horizontal FOV 100◦

Mean for image normalization [0.485, 0.456, 0.406]

Standard deviation for image normalization [0.229, 0.224, 0.225]

Speed measurement Forward speed in m/s

Normalization factor for speed 12

Data Collection

Episode length 300 sec

Triangular perturbation for off-policy data 20%

episodes (NoCrash, off-policy) 80

episodes (LB, off-policy) 160

episodes (NoCrash, on-policy, Autopilot) 80

episodes (LB, on-policy, Autopilot) 160

episodes (NoCrash, on-policy, Roach) 40

episodes (LB, on-policy, Roach) 80

DA-RB critical state sampling criterion difference in acceleration

DA-RB critical state sampling threshold 0.2

Weather Same as NoCrash train weathers

Range of veh./ped. number in NoCrash train town 1 [0, 150]/[0, 200]

Range of veh./ped. number in LB train town 1 [80, 160]/[80, 160]

Range of veh./ped. number in LB train town 3 [40, 100]/[40, 100]

Range of veh./ped. number in LB train town 4 [100, 200]/[40, 120]

Range of veh./ped. number in LB train town 6 [80, 160]/[40, 120]

Training

Number of epochs at each DAGGER iteration 25

λS, weight for the speed regularization 0.05

λV, weight for the value loss, if applied 0.05

λF, weight for the feature loss, if applied 0.001

34 2 roach

Batch size 48

Initial learning rate (LR) 0.0002

Patience for reduce-on-plateau LR schedule 5

Factor for LR schedule 0.5

Pre-trained distributional action head True

Pre-trained value head True

Image augmentation True

Table 2.7: The hyper-parameter values used for our IL agent.

2.C.3 Autopilot

The CARLA Autopilot (also called roaming agent) is a simple but effective automated
expert based on hand-crafted rules and ground-truth simulation states. The Autopilot
is composed of two PID controllers for trajectory tracking and hazard detectors for
emergency brake. Hazards include

• pedestrians/vehicles detected ahead,

• red lights/stop sings detected ahead,

• negative ego-vehicle speed, for handling slopes.

Locations and states of pedestrians, vehicles, red lights and stop signs are provided as
ground-truth by the CARLA API. If any hazard appears in a trigger area ahead of the
ego-vehicle, Autopilot will make an emergency brake with throttle = 0, steering = 0,
brake = 1. If no hazard is detected, the ego-vehicle will follow the desired path using two
PID controllers, one for speed and one for steering control. The PID controller takes as
input the location, rotation and speed of the ego-vehicle and the desired route specified
as dense (1 meter interval) waypoints. The speed PID yields throttle ∈ [0, 1] and the
steering PID yields steering ∈ [−1, 1]. We tuned the parameters for PID controllers and
hazard detectors manually, such that the Autopilot is a strong baseline. The target speed
is 6 m/s.

2.D Benchmarks

Scope: The scope of the NoCrash and the offline LeaderBoard benchmark are illustrated
in Table 2.8. The offline LeaderBoard benchmark considers more traffic scenarios and
longer routes in six different maps.

Weather: Following the NoCrash benchmark, we use ClearNoon, WetNoon, HardRainNoon
and ClearSunset as the training weather types, whereas new weather types are SoftRain-
Sunset and WetSunset. To save computational resources, only two out of the four training
weather types are evaluated, they are WetNoon and ClearSunset.

2.d benchmarks 35

Map # Routes Total Km # Traffic lights # Stop signs

NoCrash Train

Town01 25 17.4 110 0

NoCrash Test

Town02 25 8.9 94 0

LeaderBoard Train

Town01 10 7.9 47 0

Town03 20 30.7 140 63

Town04 10 24.1 72 13

Town06 10 19.5 58 1

LeaderBoard Test

Town02 6 5.5 54 0

Town04 10 24.1 72 13

Town05 10 12.4 82 29

Table 2.8: Scope of the NoCrash benchmark and the offline LeaderBoard benchmark. Total
kilometers, number of traffic lights and stop signs are measured using Roach.

36 2 roach

Map # Vehicles # Pedestrians

NoCrash dense

Town01 100 250

Town02 70 150

NoCrash busy

Town01 120 120

Town02 70 70

LeaderBoard busy

Town01 120 120

Town02 70 70

Town03 70 70

Town04 150 80

Town05 120 120

Town06 120 80

Table 2.9: Background traffic settings for different benchmarks.

Background Traffic: The number of vehicles and pedestrians spawned in each map
of different benchmarks are listed in Table 2.9. Vehicles and pedestrians are spawned
randomly from the complete blueprint library of CARLA 0.9.11. This stands in contrast
to several previous works where for example two-wheeled vehicles are disabled.

Pros and cons of the online and the offline Leaderboard:

Online Leaderboard:
(+) All methods are evaluated under exactly the same condition.
(+) No need to re-evaluate other methods.
(−) No restriction on how the method is trained and how the training data is collected.

Offline Leaderboard:
(+) Strictly prescribes both the training and testing environment.
(+) Full control and observation over the benchmark.
(−) You will have to re-evaluate other methods, if any setup of the benchmark has
changed, for example CARLA version and etc.

One can use the offline Leaderboard if a thorough study on the generalization ability of
the method is desired.

2.e additional experimental results 37

0

30
K

Train Town
 Train Weather

Train Town
 New Weather

New Town
 Train Weather

New Town
 New Weather

0

1 K + F(c)

Fe
at

ur
e

Lo
ss

Figure 2.7: Feature loss w.r.t. Roach on one of the NoCrash-dense route. The y-axis of both charts
have different scale.

2.E Additional Experimental Results

To verify IL agents trained using the feature loss indeed embed camera images to the
latent space of Roach, we report the feature loss at test time in Fig. 2.7. In the first row of
Fig. 2.7, the IL agent trained without feature loss, LK, learns a latent space independent
of the one of Roach. Hence, the test feature loss is effectively noise that is invariant to the
test condition. In the second row, LK + LF(c) is trained with the feature loss. The test
feature loss of this agent is much smaller (less than 1) and increases as expected during
the generalization tests.

To complete Fig. 5 of the main paper, driving scores of experts and IL agents at each
DAGGER iterations are in Fig. 2.8 (NoCrash-busy) and Fig. 2.9 (LeaderBoard-busy).

38 2 roach

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Dr
iv

in
g

Sc
or

e

NoCrash busy: Train Town & Train Weather

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.4

0.5

0.6

0.7

0.8

0.9

1.0
NoCrash busy: Train Town & New Weather

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.2

0.4

0.6

0.8

1.0

Dr
iv

in
g

Sc
or

e

NoCrash busy: New Town & Train Weather

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.2

0.4

0.6

0.8

1.0
NoCrash busy: New Town & New Weather

Autopilot Roach A(AP) A K K + V K + F K + V + F K + F(c) K + V + F(c)

(a) Driving Score

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

NoCrash busy: Train Town & Train Weather

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.0

0.2

0.4

0.6

0.8

1.0
NoCrash busy: Train Town & New Weather

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

NoCrash busy: New Town & Train Weather

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.0

0.2

0.4

0.6

0.8

1.0
NoCrash busy: New Town & New Weather

Autopilot Roach A(AP) A K K + V K + F K + V + F K + F(c) K + V + F(c)

(b) Success Rate

Figure 2.8: Driving performance of experts and IL agents on the NoCrash-busy benchmark. All
IL agents (dashed lines) are supervised by Roach except for LA(AP), which is supervised by the
CARLA Autopilot. For IL agents at the 5th iteration and all experts, results are reported as the
mean over 3 evaluation seeds. Others agents are evaluated only once.

2.e additional experimental results 39

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dr
iv

in
g

Sc
or

e

LeaderBoard: Train Town & Train Weather

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5

0.3

0.4

0.5

0.6

0.7

0.8

0.9
LeaderBoard: Train Town & New Weather

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.2

0.4

0.6

0.8

Dr
iv

in
g

Sc
or

e

LeaderBoard: New Town & Train Weather

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.2

0.4

0.6

0.8

LeaderBoard: New Town & New Weather

Autopilot Roach A(AP) A K K + V K + F K + V + F K + F(c) K + V + F(c)

(a) Driving Score

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.0

0.2

0.4

0.6

0.8

Su
ce

ss
 R

at
e

LeaderBoard: Train Town & Train Weather

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.0

0.2

0.4

0.6

0.8
LeaderBoard: Train Town & New Weather

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.0

0.2

0.4

0.6

0.8

Su
ce

ss
 R

at
e

LeaderBoard: New Town & Train Weather

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5
0.0

0.2

0.4

0.6

0.8
LeaderBoard: New Town & New Weather

Autopilot Roach A(AP) A K K + V K + F K + V + F K + F(c) K + V + F(c)

(b) Success Rate

Figure 2.9: Driving performance of experts and IL agents on the offline LeaderBoard-busy
benchmark. All IL agents (dashed lines) are supervised by Roach except for LA(AP), which is
supervised by the CARLA Autopilot. For all experts, results are reported as the mean over 3
evaluation seeds. Results of IL agents are evaluated only once.

3
A Multiplicative Value Function for Safe
and Efficient Reinforcement Learning

An emerging field of sequential decision problems is safe Reinforcement Learning (RL),
where the objective is to maximize the reward while obeying safety constraints. Being
able to handle constraints is essential for deploying RL agents in real-world environments,
where constraint violations can harm the agent and the environment. To this end,
we propose a safe model-free RL algorithm with a novel multiplicative value function
consisting of a safety critic and a reward critic. The safety critic predicts the probability
of constraint violation and discounts the reward critic that only estimates constraint-free
returns. By splitting responsibilities, we facilitate the learning task leading to increased
sample efficiency. We integrate our approach into two popular RL algorithms, Proximal
Policy Optimization and Soft Actor-Critic, and evaluate our method in four safety-focused
environments, including classical RL benchmarks augmented with safety constraints and
robot navigation tasks with images and raw Lidar scans as observations. Finally, we make
the zero-shot sim-to-real transfer where a differential drive robot has to navigate through a
cluttered room. Our code can be found at https://github.com/nikeke19/Safe-Mult-RL.

3.1 Introduction

Reinforcement Learning (RL) has made significant progress in recent years. Breakthroughs
have been achieved on playing Atari [51] and board games like Go [52], as well as multi-
agent RL on Starcraft [53] and Dota [54]. While some works like Miki et al. [190] deploy
RL agents on real-world systems, most of the research is still conducted in simulation [35,
191]. On the one hand, the sim-to-real transfer requires high-fidelity simulators and
robust models. On the other hand, there is the safety aspect. In simulation, the agent
can perform any action without real consequences. However, when robots are deployed
in reality, not every action is admissible. This can be due to damage to the agent, e.g.,
when a robot crashes into an obstacle, or damage to the environment, e.g., when the
obstacle is a human. Thus, it is necessary to consider safety by design. We can formulate
safety requirements using Constrained Markov Decision Process (CMDP) [192], where in

This chapter was published as a conference article: Nick Bührer, Zhejun Zhang, Alexander Liniger, Fisher Yu, Luc Van
Gool, “A Multiplicative Value Function for Safe and Efficient Reinforcement Learning”, International Conference on
Intelligent Robots and Systems (IROS), 2023, doi: 10.1109/IROS55552.2023.10342288

41

https://github.com/nikeke19/Safe-Mult-RL
https://ieeexplore.ieee.org/document/10342288

42 3 multiplicative value function

Figure 3.1: Linear Quadratic Regulator policy evaluation of a point robot navigating towards
the goal in the middle while avoiding the gray obstacles. The ground truth return shows sharp
discontinuities that are better replicated by the multiplicative value function. We use a deterministic
policy and obtain the ground truth return by running Monte Carlo rollouts on a fine grid.

addition to maximizing the reward, the RL agent has to fulfill constraints on the expected
accumulated safety cost.

Usually, the expected safety cost is estimated with a value function, called the safety
critic. With a particular choice of safety cost, the cumulative cost constraint can be
transformed into a chance constraint and be relaxed with a Lagrange multiplier. In
contrast to previous works [68, 69, 70, 72], we additionally propose a novel multiplicative
value function where the safety critic explicitly addresses constraints and discounts a
reward critic that only estimates constraint-free returns. The multiplicative value function
has several advantages. A standard RL algorithm can learn safe behavior by specifying a
penalty for constraint-violating actions. However, the performance can be sensitive to the
magnitude of the penalty [76]. In contrast, we do not need to specify the magnitude: the
reward critic neglects constraint violating returns, and the safety critic learns a binary
decision. Moreover, penalties are often large in magnitude to discourage standard RL
agents from constraint violating actions. As a result, there can be sharp discontinuities in
the value landscape as shown in Fig. 3.1, which makes it difficult for a regular neural
network to learn the value function. In our approach, the reward critic does not have
to learn these discontinuities. Instead, the responsibility is shifted to the safety critic
that estimates the probability of constraint violation. This makes the model optimization
better behaved and leads to faster convergence with increased stability.

We combine our approach with two popular algorithms: Proximal Policy Optimization
(PPO) [172] and Soft Actor-Critic (SAC) [58], but in general, it can be combined with any
on-policy or off-policy method that relies on a value or advantage function. To evaluate
the effectiveness of our approach, we construct four safety-critical environments ranging
from low to high dimensional observations based on images and Lidar scans. Finally, we
deploy our algorithm on a real robot and perform map-less navigation.

Our contributions are summarized as follows:

• We introduce a novel multiplicative value function, that combines a regular value
function and a safety critic in a multiplicative fashion. We integrate this multiplica-
tive value function into PPO and SAC.

• We test our methods on a suit of safety-critical environments and show that our
methods outperform competing safe RL methods.

3.2 related work 43

• We conduct experiments on a real-world robot navigation task in a cluttered
environment and show zero-shot sim-to-real transfer.

3.2 Related Work

An overview of the recent advances in safe RL can be found in the latest surveys [89, 90].
In this section, we will focus on the prior works most related to our approach.

Primal-dual approaches, i.e., Lagrangian-based approaches, convert the CMDP into an
unconstrained problem by relaxing the safety constraint with a Lagrange multiplier. This
is the most straightforward way to solve a CMDP and is also the most related to our work.
A Lagrange multiplier with heuristic update rules was first proposed in [72]. More recent
works established theoretical groundwork by proving convergence guarantees [68, 74]
and zero duality gap [75]. Practically, the Lagrangian approach has been integrated with
PPO/TRPO [193] and SAC [73, 194]. Our PPO implementation is similar to [193] except
that our multiplicative value function adds a secondary mechanism that improves the
learning stability. For our SAC integration, the gradient of the multiplicative value func-
tion already naturally results in something similar to a Lagrange multiplier. Commonly,
the safety constraint is formulated as a constraint budget over the expected safety cost,
e.g., [68, 69, 70, 193, 194, 195]. However, only considering the expected safety at each time
step can cause the realized cost to exceed the constraint budget [73]. To provide better
constraint satisfaction, worst-case analysis can be performed with the conditional value
at risk [68, 73]. We tackle this issue by using reachability analysis and imposing zero
constraint violation probability in our experiments. Another line of research improves
the stability of the learning process by using derivatives and integrals of the constraint
function yielding a PID approach [70, 195]. Similarly, our multiplicative value function
improves stability by simplifying the learning task. Lastly, there are works that ensure
state-wise safety with a learned Lagrange multiplier [194] and introduce safety transfer
learning [69].

Primal approaches solve the CMDP by computing a policy gradient that satisfies the
constraints. Prior works have achieved this in different ways, for example by searching the
feasible policy in the trust region [76], projecting the unconstrained policy [77], projecting
the optimum of the constrained non-parametric policy optimization [78], restricting
the policy via log-barrier functions [79], alternating between objective improvement
and constraint satisfaction [80] or deriving an equivalent unconstrained problem [196,
197]. Since the primal algorithms are harder to implement but not superior in terms of
performance, they are less popular than the primal-dual algorithms.

Lyapunov approaches address the CMDP by leveraging Lyapunov functions, which
are used in control theory to prove the stability of a dynamical system. In terms of
model-based RL, the Lyapunov function can be used to guarantee that an agent can be
brought back to a region of attraction [81]. More recently, this approach has been applied
to model-free RL [82] and extended in [83] by an exploratory policy that maximizes its
knowledge about safety. In [84], the policy optimization is constrained on the Lyapunov
decrease condition, which is then relaxed with a Lagrange multiplier.

44 3 multiplicative value function

Intervention approaches use backup policies to ensure safe actions. Wagener et al. [85]
defines an intervention rule based on the safety advantage between the action proposed
by the backup policy and the RL agent. Another possibility is to construct a safe set
using model-based or learning-based approaches, or a combination of both. Examples
are control barrier functions [86, 87], reachability methods [88, 198] or predictive safe set
algorithms [199, 200, 201].

3.3 Preliminaries

Lagrangian methods. Let us consider the optimization problem minx f (x), st. g(x) ≤ c,
using Lagrangian primal-dual methods this problem can be cast to an unconstrained
problem

(x∗, λ∗) = min
x

max
λ≥0

f (x) + λ(g(x)− c) ,

where λ denotes the dual variable or Lagrange multiplier [202].

CMDP formulation. The interaction between the agent and the environment can be
modeled with a Markov Decision Process (MDP). The MDP is defined by the Tuple
(S ,A, r, P, s0). Here S and A denote the state and action space respectively, the transition
probability is P(·|s, a) and the reward is r(s, a). Finally, s0 ∈ S is the initial state. For
simplicity, we consider deterministic rewards and initial states, but our results can be
easily generalized to random initial state distributions and rewards. Extending an MDP
with constraints yields a CMDP which is described by the tuple (S ,A, r, P, s0, rc, cmax).
Here, rc is a safety cost and cmax ∈ R≥0 is an upper bound on the expected cumulative
safety cost. This yields the safety constraint Eπ

[
∑∞

t=0 γt
crc(st)

∣∣s0
]
≤ cmax. The objective

of the CMDP is to find an optimal policy π∗ according to

max
π∈∆

Eπ

[
∞

∑
t=0

γtr(st, at)

∣∣∣∣∣s0

]
, s.t. Eπ

[
∞

∑
t=0

γt
crc(st)

∣∣∣∣∣s0

]
≤ cmax . (3.1)

If the feasibility set induced by the safety constraint in Eq. 3.1 is non-empty, then there
exists an optimal policy π∗ in the class of stationary Markovian policies ∆ [192].

Reachability. To make the safety constraint in Eq. 3.1 more tangible, we specify the
(un)safety as P(∃k : sk ∈ C|s0 = st), i.e., the probability of visiting states in the constraint
set C ⊆ S . We consider constraint violations as catastrophic, thus states s ∈ C are terminal
states. Coming back to the CMDP, the reachability problem can be cast to a value function
by setting rc(st) = 1C (st),

P(∃k : sk ∈ C|s0 = st) := Φπ(st) = Eπ

[
∞

∑
k=0

γk
c1C (sk)

∣∣∣∣∣s0 = st

]
, (3.2)

where 1C is the indicator function of the constraint set C.

For the proof, we closely follow [72]. First, we note that the sum Rc := ∑∞
k=0 γk

c rc(sk) is
finite and at most 1, namely when a constraint violation occurs and we reach a terminal
state. Thus, when setting γc = 1, it holds that Rc = 1 if ∃t : st ∈ C else 0. We note

3.4 methods 45

that Rc is a Bernoulli Random variable and define P(Rc = 1) := q. From the Bernoulli
distribution we know that E[Rc] = q = Φπ(st).

Practically, a lower discount factor can increase the learning stability when used in an RL
setup [72]. Furthermore, we denote Φπ(st) as the safety critic and similar to Eq. 3.2, we
define the action value safety critic as Ψπ(st, at).

3.4 Methods

Environment structure. We assume the following bounded reward structure of the
environment

r(st, at) =

 rconstraint if st ∈ C

rconstraint_free(st, at) else
, (3.3)

with rconstraint ≪ mins,a rconstraint_free(s, a) and the constraint set C being a terminal state.
The low reward for violating the constraint discourages standard RL agents from ex-
ecuting constraint violating actions. However, as shown in Fig. 3.1, the difference of
magnitude between rconstraint and rconstraint_free can cause discontinuities in the value
landscape that are difficult to learn.

Multiplicative value function. The motivation behind our multiplicative value function
is to facilitate the learning by splitting responsibilities. The safety critic Φπ(st) explicitly
handles constraints, whereas the reward critic V̄π(st) only estimates constraint-free
returns. As argued in Sec. 3.1, it is neither favorable to specify a magnitude for rconstraint
nor to learn rconstraint with the reward critic V̄π(st). Instead, we propose to clip the reward
in Eq. 3.3, and learn the reward critic with this constrain neglecting reward,

r̄(st, at) =

 mins,a rconstraint_free(s, a) if st ∈ C

rconstraint_free(st, at) else
,

V̄π(st) = Eπ

[
∞

∑
k=0

γk r̄(sk , ak)

∣∣∣∣∣s0 = st

]
.

By taking the minimum in case of a constraint violation, we lightly discourage the policy
from constraint violating actions. This can be especially useful when approximation
errors cause the safety critic to be overly optimistic. Finally, the multiplicative value
function Vπ

mult(st) is obtained by discounting the reward critic with the probability of
constrained satisfaction:

Vπ
mult(st) := (V̄π(st)− v̄min) · (1−Φπ(st)) + v̄min ,

where v̄min := mins V̄π(s) is the lower bound on the reward critic, such that
(V̄π(st)− v̄min) ≥ 0. Practically, we set v̄min to the minimum encountered V̄π value dur-
ing training. The multiplicative combination of the two critics allows a hyperparameter-
free fusion, where a constraint violating state is associated with the value of v̄min and

46 3 multiplicative value function

for save states, the value is V̄π(st). Similarly, we define Qπ
mult(st, at) with q̄min as the

multiplicative action value function:

Qπ
mult(st, at) := [Q̄π(st, at)− q̄min] · (1−Ψπ(st, at)) + q̄min . (3.4)

Note that the offset terms v̄min and q̄min could be avoided by assuming positive rewards.
Nevertheless, introducing this term allows our formulation to handle arbitrary reward
functions.

Multiplicative advantage. We also want to consider advantage-based policy gradient
methods. The advantage Aπ(st, at) is defined as,

Aπ = Qπ −Vπ = [r(st, at) + γVπ(st+1)]−Vπ(st) . (3.5)

From this, we derive three versions of the multiplicative advantage Aπ
mult:

V1: [r̄t + γVπ
mult(st+1)]−Vπ

mult(st)

V2: Qπ
mult(st, at)−Vπ

mult(st) (3.6)

V3: [Q̄π(st, at)− q̄min] [1− (rc,t + γcΦπ(st+1))] + q̄min −Vπ
mult(st)

In V1 and V2, we consider Eq. 3.5 and replace all value functions with their multiplicative
counterparts. Finally, V3 is similar to V2, but in Eq. 3.4 we use temporal difference
bootstrapping for the safety critic.

Integration into SAC. We integrate the multiplicative value function Qπ
mult into the actor

objective of SAC by replacing Qπ with Qπ
mult,

max
θ

Eaθ∼πθ
[Qπθ

mult(s, aθ)− α log πθ(aθ |s)] . (3.7)

We call this version SAC Mult. For a compact notation, we drop the dependency on
(s, aθ , π) in the following. To get a better intuition about Eq. 3.7, we investigate the
gradient of the SAC Mult objective

∇θ Qmult = (1−Ψ) · ∇θ Q̄− (Q̄− q̄min) · ∇θΨ,

which has two terms. The first term is the gradient of the Q̄-function discounted by
the probability of constraint satisfaction. The second term is the gradient of the safety
critic ∇θΨ discounted by (Q̄− q̄min), which can be understood as q-weighted multiplier.
The disadvantage of this formulation is that in states where Q̄ is high, the q-weighted
multiplier becomes large and the gradient of the safety critic dominates the overall
gradient. This can yield overly conservative behaviors. To mitigate this issue, we
additionally propose two heuristics, SAC Mult Clipped

∇θ Qmult ≈ (1−Ψ) · ∇θ Q̄−min (Q̄− q̄min, λmax) · ∇θΨ

and SAC Mult Lagrange

∇θ Qmult ≈ (1−Ψ) · ∇θ Q̄− λ · ∇θΨ .

In Mult Clipped, we limit the magnitude of the multiplier with λmax which is a hyperpa-
rameter. In Mult Lagrange, we replace the q-weighted multiplier with a Lagrange multi-
plier that is optimized using primal-dual optimization. Under mild assumptions, this is

3.5 experimental results 47

guaranteed to converge to a local optimum of the CMDP [68]. The Mult Lagrange objective
is maxθ minλ≥0 Eaθ∼πθ

[(1− Ψ(s, aθ)).detach() · Q̄(s, aθ)− α log πθ(aθ |s)− λ · (Ψ(s, aθ)−
cmax)] , where .detach() denotes the operation of detaching the variable from the compu-
tational graph. For the exact implementation, we refer to our code.

Integration into PPO. Given the three versions of the multiplicative advantage Aπ
mult

in Eq. 3.6, we can integrate them into the actor objective of PPO and extend it with a
Lagrange multiplier

max
θ

min
λ≥0

Es,a∼πθk
[min

{
πθ(a|s)
πθk (a|s) A

πθk
mult, g(ϵ, A

πθk
mult)

}
− λ ·Eaθ∼πθ

[Ψπ(s, aθ)− cmax]],

with g(ϵ, A) = (1 + ϵ)A · 1A≥0 + (1− ϵ)A · 1A<0. For the optimization of the Lagrange
multiplier, we again proceed as in [68] to guarantee convergence to a locally optimal
policy.

3.5 Experimental Results

We evaluate our methods in four environments: Lunar Lander Safe, Car Racing Safe, Point
Robot Navigation, and Gazebo Gym. The first two are derived from OpenAI’s gym [203]
and extended with safety constraints. For Lunar Lander Safe, we impose the constraint
that the agent can only land within the landing zone. In Car Racing Safe, we test how
our algorithm deals with both hard and soft constraints. We set the hard constraint that
the agent is not allowed to leave the track. For the soft constraint, we encourage the
agent to drive below 50 km/h. If the soft constraint is violated, the agent gets a small
negative reward, but the episode still continues. The agent observes the environment via
an agent centered bird’s-eye-view image and a vector containing information about the
steering angle, yawing rate, and velocity. The last two environments focus on robotic
navigation of ground robots. In Point Robot Navigation, the agent is a point robot that
has to navigate towards the goal by choosing the 2D velocity while avoiding obstacles. At
each iteration, a new set of random obstacles is spawned and the agent starts at a random
position. The agent perceives its environment via a local occupancy grid and the vector
from the current position to the goal. The Gazebo Gym is similar but the agent is a Jackal
differential drive robot modeled in Gazebo [204] with speed and yaw rate as input and
the occupancy grid is replaced by a 1D-Lidar scan. Again, the task is to navigate to the
goal that lies in the middle of a cluttered room.

For the tuning, we use a sequential grid search on the learning rate, entropy coefficient,
the number of optimization steps and experiment with the Beta distribution for the policy.
For FOCOPS [78], we additionally tune lambda, the batch size and the KL divergence
target. Furthermore, we tune the KL target and the clip range for PPO and the training
frequency for SAC. After the baseline tuning, we keep the same hyperparameters for our
multiplicative versions and additionally tune the safety discount factor yc and the initial
value of the Lagrange multiplier λinit.

48 3 multiplicative value function

(a) Value losses for PPO. Blue: Base, Orange: Lagrange, Green: Mult V1, Violet: Mult V2, Red: Mult V3.

(b) Value losses for SAC. Blue: Base, Orange: Lagrange, Green: Mult, Red: Mult Clipped, Violet: Mult Lagrange.

Figure 3.2: Qualitative Results

3.5.1 Results and Comparisons

With our experiments, we want to answer two questions: Firstly, can the integration of
the multiplicative value function facilitate the learning, leading to faster convergence
and improved stability? For this, we integrate our approach into the SAC and PPO and
compare against its Lagrangian counterpart. Secondly, we ask, can the integration of the
multiplicative value function into Lagrangian approaches yield comparable performance
to recent approaches, e.g., FOCOPS? All the results are shown in Table 3.1, where we
evaluate each model at an intermediate checkpoint and at the end of the training. Each
evaluation is over 10 seeds with 100 episodes.

Increased sample efficiency. One of the main motivations for the multiplicative value
function is to simplify the learning task. This is supported by Fig. 3.2, where we
observe a lower mean value loss and reduced variance across environments for both
SAC and PPO. Having a simpler learning task allows our multiplicative versions to
achieve significantly fewer constraint violations and higher rewards at the first evaluation
checkpoint, indicating greater sampling efficiency. At the final evaluation checkpoint,
our method achieves similar constraint satisfaction as the Lagrangian baseline. This is
expected since both are Lagrangian methods and with enough training samples and
model capacity, the regular value function can properly learn the value landscape.

3.5 experimental results 49

Constraint satisfaction. In simpler environments, like Lunar Lander and Point Robot
Navigation, our approach nearly achieves the target of zero constraint violations with
PPO and SAC. In Car Racing Safe, the Lagrangian baseline and PPO V1 achieve 91%
constraint satisfaction. The imperfect performance could be caused by the challenging
environment setup where minor driving errors can result in a crash. Due to the long
run-time, we stopped the Gazebo Gym experiments in Table 3.1 before convergence.
In fact, SAC Mult Lagrange trained for 2 days as done for the sim-to-real transfer in
Sec. 3.5.2 achieves a constraint satisfaction of 100%.

PPO vs. SAC. Overall, we achieve better constraint satisfaction with SAC agents in the
navigation tasks Point Robot Navigation and Gazebo Gym. The only caveat is that we
were not able to successfully train any SAC (nor FOCOPS) algorithm on Car Racing
Safe because the agents never “make" the first corner. Overall for PPO, we observe an
increased variance in the training reward if the maximum allowed KL divergence is
not explicitly tuned. The tuning is necessary because the multiplicative value function
together with the Lagrange multiplier yields more aggressive policy updates which can
cause instabilities.

Soft constraint satisfaction. In Car Racing Safe, we additionally imposed the soft
constraint to keep the velocity below 50 km/h. Even though PPO V1 and V2 achieve
similar constraint satisfaction to the Lagrangian baseline, the reward is higher. This is
because V1 and V2 violate the soft constraint with 20% and 12% respectively, whereas
the Lagrangian Baseline violates the constraint in 32% of the steps. We credit the
multiplicative value function for the improved soft-constraint satisfaction. By facilitating
the learning, the reward critic has more capacity to learn the fine details in the reward
structure, like the soft constraint on the velocity.

Increased stability. We observe better training stability across seeds with the multiplica-
tive value function. This is most prominent in Lunar Lander Safe, where we observe a
large variance in the Lagrangian baseline rewards. This is because the Lagrangian agent
only lands in 80% of the seeds reliably, both for SAC and PPO. In contrast, SAC Mult
Lagrange, Clipped and PPO Mult V2, V3 agents manage to land in all seeds, PPO Mult
V1 in 90% of the seeds. The poor performance of SAC Mult is not due to missing stability,
in fact, SAC Mult performs badly across seeds. The issue is caused by the potentially
large q-weighted multiplier, which makes the policy updates overly conservative leading
to high timeout rates without ever landing.

50 3 multiplicative value function

Reward

↑
% Constraint

violations ↓
Reward

↑
% Constraint

violations ↓

Lunar Lander Safe

SAC 50k 150k

SAC base 90 ± 108 10 ± 16 181 ± 117 3 ± 6

Lagrange 111± 105 17± 13 184± 128 2± 3

Mult −35± 27 3 ± 5 −34± 22 3± 4

Mult Clipped 134 ± 94 14± 13 243± 49 8± 15

Mult Lagrange 125± 59 29± 15 251 ± 20 2 ± 2

PPO 50k 150k

PPO base −126± 158 77 ± 29 225 ± 100 10 ± 30

Lagrange −24± 146 54± 39 204± 116 12± 24

V1 101± 84 41± 19 205± 78 7± 16

V2 89± 122 44± 34 251± 28 5± 9

V3 144 ± 4 26 ± 22 264 ± 5 1 ± 2

FOCOPS −129± 21 64± 24 117± 80 30± 19

Point Robot Navigation

SAC 50k 100k

SAC base 22± 19 1 ± 1 38 ± 1 1 ± 1

Lagrange 29± 8 0 ± 0 38 ± 1 0 ± 0

Mult 34± 3 0 ± 0 38 ± 1 0 ± 0

Mult Clipped 33± 4 0 ± 0 38 ± 1 0 ± 0

Mult Lagrange 37 ± 2 0 ± 0 37± 2 0 ± 0

PPO 250k 500k

PPO base 15 ± 15 3 ± 3 31 ± 3 3 ± 2

Lagrange 15± 16 3 ± 3 24± 5 3± 2

V1 25± 5 3 ± 3 30 ± 4 2 ± 1

V2 11± 21 3 ± 3 17± 15 3± 1

V3 27 ± 5 5± 2 29± 3 3± 3

FOCOPS 17± 11 0 ± 0 33 ± 2 0 ± 0

Gazebo Gym

3.5 experimental results 51

SAC 100k 200k

SAC base 34 ± 6 7 ± 9 35 ± 5 6 ± 8

Lagrange 30± 7 11± 12 35± 6 5± 10

Mult 34± 11 5± 12 35± 6 3 ± 7

Mult Clipped 36 ± 5 3 ± 8 36 ± 5 3 ± 8

Mult Lagrange 36 ± 6 4 ± 9 36 ± 5 3 ± 8

PPO 250k 750k

PPO base 27± 6 18± 11 31 ± 5 12± 8

Lagrange 26± 5 19± 9 31± 6 12± 9

V1 30 ± 6 14 ± 9 31 ± 5 11 ± 8

FOCOPS 13± 12 19± 8 29± 5 15± 9

Car Racing Safe

PPO 500k 1000k

PPO base 43± 23 28± 25 89± 25 9± 15

Lagrange 43± 23 28± 25 89± 25 9± 15

V1 74 ± 19 17 ± 14 98± 13 9 ± 7

V2 65± 24 26± 15 100 ± 9 10± 6

V3 73± 21 25± 15 78± 17 22± 16

FOCOPS −2± 2 93± 2 −2± 2 93± 2

Table 3.1: SAC and PPO evaluation results. Overall, PPO Mult V1 delivers most consistently
good performance across environments. This might be because V1 is based on the Generalized
Advantage Estimation [184] which has shown to work particularly well for standard PPO. Among
the SAC derivatives, Mult Clipped and Mult Lagrange perform the most consistent. For SAC Mult,
the q-weighted safety multiplier yields overly conservative behavior in Lunar Lander, where the
agent rarely lands, but instead times out. Consequently the reward is low.

Qualitative results. In Fig. 3.3a, we show the qualitative results for Point Robot Naviga-
tion. Of most interest is the multiplicative value function, which can better represent the
obstacles highlighted by red boxes. Furthermore, the trajectories of SAC Mult Clipped
seem more directed towards the goal compared to the Lagrangian baseline. In Lunar
Lander Safe, we observe the Mult agents land faster than the Lagrangian agents by having
greater downward speeds high above the landing pad, while at lower altitudes, landing
as cautiously as the Lagrangians.

Theoretical guarantees vs. heuristics. Based on [68], we have theoretical safety guarantees
for all PPO Multiplicative versions as well as for SAC Mult Lagrange. The SAC Mult
and Clipped inhibit a q-weighted multiplier from the gradient of the multiplicative

52 3 multiplicative value function
S

A
C

 L
a
g

ra
n

g
e

S
A

C
 M

u
lt

 C
li
p

p
e
d

(a) Evaluation of SAC Mult Lagrange and the La-
grangian baseline after 100k steps on Point Robot
Navigation. The multiplicative value function better
represents obstacles.

(b) Trajectories of real-world experiment with a differen-
tial drive robot and SAC Mult Lagrange. Goal regions are
marked with numbers 1-7. Starting point is 0. Here, success
rate is 100%.

Figure 3.3: Qualitative results on robot navigation environments.

value function. However, this multiplier is not a Lagrangian multiplier, thus has no
theoretical guarantees. Practically, we observe that SAC Mult and Mult Clipped have
similar constraint satisfaction as SAC Mult Lagrange.

Comparison to FOCOPS. For Lunar Lander, the FOCOPS evaluation result at 150k steps
is significantly worse than for any PPO Mult algorithm. We suspect this is caused by
poor sample efficiency. Therefore, we train FOCOPS up to 300k steps where it obtains a
reward of 215± 65 and a constraint violation rate of 13± 18%. This is still worse than any
Mult algorithm at 150k steps and is due to two seeds showing high constraint violation
rates of 53% and 38%. In Point Robot Navigation, our algorithms converge faster but
finally, FOCOPS outperforms all PPO Mult agents and is only beaten by SAC. In Gazebo
Gym, FOCOPS performs worse than PPO in both evaluations, however, longer training
could yield more comparable performance. Finally, in Car Racing Safe the FOCOPS agent
never gets passed the first corner similar to SAC.

3.5.2 Real-World Experiments

Based on the good performance of SAC Mult Lagrange on Gazebo Gym, the question
arises of how the learned policy performs on a real Jackal robot? Can we tackle navigation,
one of the fundamental robotic problems, in a safe way while only given sparse Lidar
observations and a direction to the goal? To this end, we trained the policy for 4M steps in
simulation with action noise, a smaller goal region of 0.3m and noisy Lidar observations.
Furthermore, we included a cross-attention encoder for both the policy and value nets as
depicted in Fig 3.4. This attention mechanism allows the networks to focus on the latent
representation of certain Lidar rays, for example the rays that are pointing forward. Those

3.5 experimental results 53

1-
D

 C
N

N

M
LPcat

cat

*

Va
lu

e
H

ea
d

Po
lic

y
H

ea
d

Figure 3.4: Attention Encoder used for the real world experiments. Here xRobot is the vector from
current position to the goal and xLidar is the measurement from the 1D-Lidar.

changes helped the policy to achieve a 100% success rate with 0% constraint violations in
the simulation.

One of the main differences between simulation and reality is that the ground friction
in the real world is larger and the velocity controller behaves differently, i.e., given the
same velocity command, the robot moves faster in simulation. In reality, if the robot is
stationary and the velocity command is chosen too small, the robot can remain stationary
due to the increased friction and different behavior of the velocity controller. Another
real-world difficulty is the delay of 0.3s from the Lidar rays being recorded, send to the
off-board computer, and the policy commands being sent back and executed on the robot.
However, the fact that the real robot moves slower mitigates the time delay to an extent.

In the lab, we constructed a cluttered obstacle course and directly deployed the policy
trained in simulation on the robot. We defined seven goal regions and let the robot pass
them four times. One of the four runs is depicted in Fig. 3.3b. The robot drives with a
direct trajectory from start 0 to goals 1 and 2, where it needs to reverse its direction by
180 degrees to approach goal 3. Interestingly, the policy did not learn to turn on the spot
a differential drive robot would allow, but instead, the trajectories from goal 2-4 resemble
more a kinematic bicycle model. This unfortunately caused the robot to get stuck once
between goals 2-3, however, without violating a safety constraint. Overall, we report a
success rate of 96% with 100% constraint satisfaction meaning that no box was touched.

Encouraged by the demonstrated safety of our algorithm, we wanted to see if our
agent can generalize from static box obstacles as encountered in the simulation to moving
obstacles like humans in reality. For this, we arranged the goals in a circle and sequentially
let the robot pass them. In the first experiment, we suddenly put a box in front of the
agent as shown in Fig. 3.5 (a). The robot reacted in a safe manner and came to an
immediate stop. After a few seconds, we removed the box and the robot continued its
original trajectory. In the second experiment shown in Fig. 3.5 (b) we wanted to go a
step further and see how the robot deals with obstacle shapes it has never seen before,
i.e., human legs. Additionally, we wanted to know if the robot could naturally interact
with a human walking next to it. For this, we started behind the robot, and then walked
next to it at a certain safety distance, see Fig. 3.5 (b1). This did not visibly influence the
robot’s trajectory. When we overtook the robot, we positioned ourselves close to a box

54 3 multiplicative value function

Figure 3.5: (a): We dynamically put an obstacle in the trajectory of the robot which causes it to stop.
The robot then waits until the obstacle is removed and continues its trajectory. (b1, b2): Dynamic
interactions with the robot by first walking next to it (b1), then overtaking it and standing to the
side of the box (b2). While the person walks next to it the robot continues its trajectory. When
the person overtook the robot, it swings to the right to avoid the collision. (c): The person walks
towards the robot. The avoid the collision, the robot drives backwards. The complete video is
available at https://youtu.be/gAcETwOWTM4.

such that we were in the trajectory of the robot, see Fig. 3.5 (b2). Because of that, the
robot corrected its trajectory and steered away from us. The final interaction is shown
in Fig. 3.5 (c). Here we wanted to investigate what happens if we actively provoke a
collision by moving towards the robot. In that case, the robot started to move backward
to keep a certain safety distance from us. The only drawback is that when relentlessly
chasing the robot one can cause a rear collision with another obstacle. An explanation for
this is that the robot has a Lidar blind spot in the back due to the mounted robot arm.
All the interactions can be found in the supplementary video.

3.6 Conclusions and Limitations

In this work, we introduced a safety critic to yield a multiplicative value function. We
started with the CMDP formulation, derived the safety critic from reachability analysis
and integrated our approach into the SAC and PPO framework. We proposed several
versions of SAC and PPO using our multiplicative value function and showed increased
sample efficiency and stability compared to the Lagrangian and FOCOPS baselines.
Furthermore, the multiplicative value function can help to learn the fine details in the
reward structure, like soft constraints. To show the real-world potential of our method,
we took a SAC Mult Lagrange agent trained in simulation and successfully deployed the
policy on a real robot in a zero-shot sim-to-real fashion. The robot showed safe behavior
and was able to generalize to dynamic obstacles of novel shape. In future work, we would
like to investigate further theoretical justification for our multiplicative value function.

Limitations. One of the main limitations is that our Lagrangian approach encourages
safety during training but cannot guarantee it. This issue can be mitigated by adding
an intervention mechanism, which could however cause problems when learning the
safety critic as it requires reaching the constraint set. Future work will investigate the
feasibility of using the intervention as a terminal state and more theoretical analysis of
the multiplicative value function. Moreover, our method adds the initial value of the
Lagrange multiplier and the safety discount factor γc as hyperparameters to which the
algorithm can be sensitive in some environments.

https://youtu.be/gAcETwOWTM4

3.a supplementary video 55

Appendices

3.A Supplementary Video

The supplementary video for the paper is found at https://youtu.be/gAcETwOWTM4. This
video demonstrates the qualitative outcomes of the interaction experiment with the Jackal
differential drive robot. In the first part of the video, we dynamically block the path of
the agent with a box. Encouraged by the demonstrated safety, we try interactions with a
human in the second part of the video. This is challenging in two ways: First, the agent
only perceives the legs of the human, which are significantly thinner than the obstacles
encountered in training. Second, the agent only encountered static objects in training
while the human is a dynamic obstacle. Still, the agent shows safe behavior.

3.B Hyperparameter Tuning

For the tuning, we start with the default parameters of [185] or the suggested parameters
of [205] for Car Racing and Lunar Lander. We then tune the PPO and SAC baseline
algorithms by varying the parameters of the initial learning rate and schedule, entropy
coefficient and schedule, state-dependent exploration [206] vs. standard action sampling,
and Gaussian vs. Beta distribution for the actor policy. For PPO, we additionally tune the
clip range, the KL divergence target, the initial variance parameter of the Gaussian policy,
and the number of epochs of optimization. As for SAC, we vary the training frequency,
the number of gradient steps, how many samples to collect before starting the training,
and the buffer size. Once satisfied with the baseline performance, we keep the same
hyperparameters for our multiplicative versions and additionally tune the safety discount
factor yc and the initial value of the Lagrange multiplier λinit. To best compare the effect
of the multiplicative value function, we use the same initial Lagrange multiplier λinit for
our multiplicative versions and the Lagrange baseline.

3.C Complete Algorithms for SAC and PPO Multiplicative

Algorithm 1 is the complete version of SAC Multiplicative, whereas Algorithm 2 is the
complete version of the PPO Multiplicative. The differences between our proposed
methods and the standard algorithms are highlighted in blue.

https://youtu.be/gAcETwOWTM4

56 3 multiplicative value function

Algorithm 1 SAC Multiplicative

1: Init: policy parameters θ, Q̄-function parameters ξ1, ξ2, Safety critic parameters ψ1,
ψ2, empty replay buffer D.

2: Set target parameters equal to main parameters ξtarg,i ← ξi , ψtarg,i ← ψi , for i ∈ {1, 2}
3: repeat
4: Observe state s and sample action a ∼ πθ(·|s).
5: Observe next state s′ and done signal d.
6: Observe clipped reward r̄ and constraint cost rc.
7: Store (s, a, r̄, rc, s′, d) in replay buffer D.
8: Reset environment states if s′ is terminal.
9: if it’s time to update then

10: for j in range(however many updates) do

11: Randomly sample a batch of transitions from D, B = {(s, a, r̄, rc, s′, d)} .

12: Compute targets y(r̄, s′, d) for Q̄-functions:

r̄ + γ(1− d)(min
i

Q̄ξtarg,i (s
′, ã′)− α log πθ(ã′|s′)), where ã′ ∼ πθ(·|s′)

13: Compute targets yc(rc, s′, d) for safety critic:

rc + γc(1− d)(max
i

Ψψtarg,i (s
′, ã′)), where ã′ ∼ πθ(·|s′)

14: Update Q̄-functions for i ∈ {1, 2}:

∇ξi

1
|B| ∑

b∈B

(
Q̄ξi (s, a)− y(r̄, s′, d)

)2 , where b = (s, a, r̄, rc, s′, d)

15: Update safety critic for i ∈ {1, 2}, BCE denotes the binary cross-entropy:

∇ψi

1
|B| ∑

b∈B
BCE

(
Ψψi (s, a), yc(rc, s′, d)

)
,

16: Update policy by one step of gradient ascent:

∇θ
1
|B| ∑

s∈B
Qmult,ξ,ψ(s, ãθ)− α log πθ(ãθ |s),

where ãθ(s) is sampled from πθ(·|s) via reparametrization trick.

17: Update target networks:

ξtarg,i ← ρ · ξtarg,i + (1− ρ)ξi , ψtarg,i ← ρc · ψtarg,i + (1− ρc)ψi , i ∈ {1, 2}

18: end for
19: end if
20: until convergence

3.c complete algorithms for sac and ppo multiplicative 57

Algorithm 2 PPO Multiplicative

1: init: policy parameters θ0, value function parameters ξ0, safety critic parameters ψ1,0,
ψ2,0, maximum unsafety probability target cmax, and Lagrange multiplier λ.

2: for k = 0, 1, 2, ... do
3: Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environ-

ment.

4: Compute clipped rewards-to-go R̂t and constraint cost-to-go Ĉt .

5: Compute advantage estimates, Âmult with current value function V̄ξk and safety
critic Ψψk .

6: Approximate Φ̂πθ (s) := Eaθ∼πθ
[Ψ(s, aθ)− cmax] the expectation in the PPO Mult

objective by sampling from the policy

Φ̂πθ (s) ≈ 1
N

N

∑
i=0

max
j=1,2

Ψψj (s, aθi)− cmax,

where aθi ∼ πθ .

7: Update the policy θ by maximizing the PPO-Clip Mult objective:

1
|Dk |T ∑

τ∈Dk

T

∑
t=0

min
(πθ(at|xt)

πθk (at|xt)
A

πθk
mult(x, a),

g(ϵ, A
πθk
mult(x, a))

)
− λΦ̂πθ (st),

typically via stochastic gradient ascent with Adam.

8: Update the Lagrange Multiplier by

λ← max

(
0, λ + α

1
|Dk |T ∑

τ∈Dk

T

∑
t=0

P̂πθ
c (xt)

)
,

where α is a learning rate.

9: Fit value function using mean-squared error:

ξk+1 = arg min
ξ

1
|Dk |T ∑

τ∈Dk

T

∑
t=0

(
V̄ξ (st)− R̂t

)2

10: Update safety critic parameter ψi,k+1 by minimizing the binary cross entropy:

1
|Dk |T ∑

τ∈Dk

T

∑
t=0

BCE
(
Ψψi (x, a), Ĉt

)
,

where i ∈ {1, 2}.
11: end for

58 3 multiplicative value function

3.D Detailed Experimental Description

To recapitulate, we assume the following reward structure of the environment

r(st, at) =

 rconstraint if st ∈ C

rconstraint_free(st, at) else

Here, we associate rconstraint with hard constraints which cause the episode to end in case
of constraint violations. Additionally, there can be soft constraints encoded in rconstraint_free.
Violating a soft constraint causes a negative reward but the episode continues.

Lunar Lander Safe is a continuous control task where the agent has to land a rocket on
the moon’s surface [203]. Once the rocket lands, the episode ends. The agent receives a
reward for minimizing the distance to the landing pad and it can land anywhere as long
as its down velocity is slow enough when touching the ground. The observation is

x⃗observation = [d⃗, v⃗, ϕ, ϕ̇,1contact_left,1contact_right],

where d⃗ denotes the vector from current position to landing pad, v⃗ is the linear velocity
of the agent, ϕ the roll angle and 1contact denotes if the corresponding left or right leg has
ground contact. We want to make the environment more safety-critical and go by the
concept “the floor is lava". This means, we keep the original constraint on the maximum
allowed landing velocity but expand the constraint set C such that landing outside the
landing pad is not allowed anymore. The rewards are

rconstraint_free =− 100 ·
(
||d⃗t||2 − ||d⃗t−1||2

)
− 100 · (||⃗vt||2 − ||⃗vt−1||2)
− 100 · (ϕt − ϕt−1)

+ 10 · (1contact_left,t − 1contact_left,t-1)

+ 10 ·
(
1contact_right,t − 1contact_right,t-1

)
− fuel_spend

+ 100 · 1contact_right,t1contact_left,t1||⃗vt ||2<0.01,

rconstraint =− 100,

where the last line in rconstraint_free denotes the state of a successful landing. Furthermore,
we introduce a timeout if the agent cannot land within 1000 steps. Since no measure of
time is present in the observation, the agent does not know about the timeout. The action
space is two dimensional, representing the impulse the agent can apply to the left/right
and up/down using “rocket engines".

Car Racing Safe environment is based on CarRacing from OpenAI [203] where the
agent is rewarded for driving around a race track. Each iteration, a new random track
is spawned. The episode terminates if the agent has visited all track tiles or leaves
the playground, which extends far beyond the track. Again, we want to make this
environment more safety critic. For this, we tighten the hard constraint such that the

3.e point robot navigation 59

Figure 3.6: Point Robot Navigation. The obstacles are shown in gray, the goal region in blue, the
agent is a black dot, and the field of view of the local occupancy grid is marked by the red box.
The environment has the boundaries [−1, 1] m.

agent enters the constraint set C if it leaves the racetrack. Also, the agent has to drive
faster than 0.1 km/h after an initial time period. Additionally, we impose a soft constraint
that encourages the agent to drive below 50 km/h, which is encoded in the reward

rconstraint_free =
0.3

ntiles
· 1new_track +

 0.005v if v < 50

−0.01v if v ≥ 50
, rconstraint = −10 ,

where v denotes the longitudinal velocity. The observation space of the agent consists
of an agent-centered bird’s-eye-view image, longitudinal velocity v, yawing rate ψ and
steering angle of the wheels δ, x⃗observation = [img, v, ψ̇, δ]. The action space is continuous
and two-dimensional. The actions are between accelerating/braking and steering to the
left/right. We use the CNN structure of [51] to process the birds-eye-view image.

3.E Point Robot Navigation

In the Point Robot Navigation environment, the agent has to navigate to a goal region
of 0.1 m while avoiding obstacles and staying inside the environment boundaries. At
each iteration, both the starting position of the robot and the set of obstacles are random.
An example of the environment can be taken from Fig. 3.6. As the observation, the
agent receives the vector d⃗ from the current position to the goal and an agent-centered
occupancy grid,

x⃗observation = [d⃗, oc_grid].

60 3 multiplicative value function

Figure 3.7: Top-down view of the Jackal Robot. The laser scan is occluded due to the robot arm
yielding a field of view of 300° as depicted with the red circle.

The action space is two dimensional, representing the percentage of a step size the agent
can travel in x and y-direction. The reward is

rconstraint_free =

 40 if ||d⃗||2 < 0.1

−0.1 else
, rconstraint = −20 . (3.8)

This corresponds to a sparse reward setting. The step penalty of −0.1 encourages the
agent to reach the goal in a low number of steps. Furthermore, we choose the reward
for reaching the goal higher than the penalty for constraint violation. With a lower goal
reward, we have experienced baseline agents that try to crash immediately into obstacles
to avoid the accumulation of step penalties. To process the occupancy grid, we use a
small CNN encoder. When initially training SAC and PPO baselines, we experienced
instability. This was related to the model not understanding the occupancy grid. To
mitigate the issue, we added a decoder module to the CNN and posed an auxiliary loss
on the reconstruction error. This improved the performance and stability of PPO. For
SAC, we had to additionally use separate CNN encoders for actor, reward and safety
critic.

Gazebo Gym is similar to the Point Robot Navigation meaning that it shares the same
task and constraint set C but resembles a realistic environment. The agent is a Jackal
differential drive robot. Furthermore, the environment size is increased from 1x1 to 8x8
m. Similarly, the goal region is enlarged to 1 m in the easy and to 0.3 m in the hard
setting of Gazebo Gym. The observation of the agent is given as

x⃗observation = [d⃗, sin(ψ), cos(ψ), vlong, ψ̇, d⃗laser], (3.9)

where d⃗ denotes the vector from the current robot position to the goal, ψ the yawing angle
of the robot and vlong the longitudinal velocity, assuming zero slip. The environment is
encoded in d⃗laser which is a 120-dimensional vector containing the 1D range measurements

3.f additional experimental results 61

Figure 3.8: Gazebo Gym. This is an 8x8 m world where the task is to navigate a cluttered
environment. The picture shows the training of PPO.

of each laser ray with small additive Gaussian noise. The laser scan has a field of view
of 300° as depicted in Fig. 3.7. We first have been experiencing with the sparse reward
setting in Eq. 3.8 in Point Robot Navigation. However, both SAC and PPO baseline
performed poorly with success rates around 10% at 250k steps. To account for the more
challenging dynamics of a differential drive robot, we implemented the dense reward

rconstraint_free =

 40 if ||d⃗||2 < 0.1

−0.1||d⃗||2 else
, rconstraint = −20 .

The term −0.1||d⃗||2 is a dense signal that directly connects the observation of the robot in
Eq. 3.9 to the reward. The environment is implemented in Gazebo [204]. For PPO, we
train 9 agents simultaneously, whereas for SAC, only one agent is used. The sampling
time is 0.1s. At each iteration, the agent starts at a random position, and every forty
iterations, a new set of obstacles is randomly spawned. In the hard mode, the agent is
subject to Gaussian additive action noise. An example of the environment is shown in
Fig. 3.8.

3.F Additional Experimental Results

We provide the training curves of SAC in Fig. 3.9 and of PPO in Fig. 3.10. Compared
to the evaluation results in Table 1 and 2 of the main paper, the algorithms violate the
constraints more frequently in training. However, this is expected since the randomness of
the training policy can cause the agent to reach potentially dangerous states. Furthermore,
in Fig. 3.10, we provide the soft constraint violation rates in Car Racing Safe. Interestingly,
the agent drives faster with the deterministic policy such that the soft constraint is
violated more frequently in evaluation.

62 3 multiplicative value function

Figure 3.9: SAC training curves. Top to bottom: Lunar Lander Safe, Point Robot Navigation,
Gazebo Gym.

Figure 3.10: PPO training curves. Top to bottom: Lunar Lander Safe, Car Racing Safe, Point Robot
Navigation, Gazebo Gym.

3.f additional experimental results 63

Figure 3.11: Qualitative comparison of SAC vs SAC Mult Clipped on seed six after 300k steps on
Lunar Lander Safe. We depict every fifth frame of a one-episode video evaluation. The images
have to be read from left to right, top to bottom. In each frame, the first column with Q and C
denotes the estimated value and constraint violation probability of the next suggested action. The
second column shows the action values and the constraint violation probabilities for basic actions
like going up, left, right or down. The last column depicts the current downwards velocity of the
lander.

We furthermore present qualitative results for Lunar Lander Safe, Car Racing Safe and
Gazebo Gym. In Fig. 3.11, we compare the landing of SAC Mult Clipped against SAC
baseline on Lunar Lander Safe. In the first row, the flights of baseline and Mult Clipped
agent look similar. However, in the third frame, we see that the downward velocity of
the baseline lander is 1.7 m/s, which is much higher than 0.9 m/s of the multiplicative
version. When continuing with the baseline plot, second row, first image, we see that the
lander slows down by 0.2 m/s and uses its right leg to establish ground contact. This
makes the agent decelerate from 1.5 to 0.3 m/s, shown in the next frame. In contrast, the
multiplicative agent lands more conservatively. Starting from the second row, the next
five frames show the agent decelerating. Shortly before landing, the agent has a velocity
of 0.7 m/s and lands with both legs simultaneously. This is much safer from a real-world
perspective: Slowing down from 0.7→0 m/s with two legs compared to 1.5→0.3 m/s
with one leg like the baseline.

64 3 multiplicative value function

Figure 3.12: Qualitative comparison of PPO base vs PPO Mult V1 on seed six after 1M steps. We
depict every fifth frame of a one-episode video evaluation. The images have to be read from left to
right, top to bottom. In each frame, the first two rows with V and C denote the estimated value
and constraint violation probability at the current state with the next suggested action. The third
and fourth row depict the next suggested action. The last row contains the constraint violation
probabilities for basic actions like steering left, right, accelerating and braking.

Next, we regard the first frame of Car Racing Safe in Fig. 3.12. Both the multiplicative
and baseline agents steer to the right to open up the corner. When proceeding to the
third frame, we can see that the baseline agent has opened up the corner more but also
has a higher velocity of 49 km/h than the multiplicative agent. On the other side the
multiplicative agent slows down to 36 km/h and cuts the inside. Continuing with frame
four, we see that the velocity of the baseline agent is still high at 45 km/h. This limits
the agent’s ability to steer to the left without losing traction. At this point, the safety
critic estimates a crashing probability of 40% (note that we train a safety critic also in the
baseline version for visualization purposes, but to not use it in any way for the policy
training and stop all possible gradients). As we proceed, the agent cannot make the
corner and leaves the track. We now regard the multiplicative policy. In the fourth frame,
we can see that the velocity is low at 34 km/h. This allows the agent to steer more
aggressively to the left. In the next frame, the agent suggests further steering to the left

3.f additional experimental results 65

but also starts to accelerate. This is a real-world racing technique where one starts to
accelerate after the apex of a corner to increase traction.

Finally, we switch to the Gazebo Gym results shown in Fig. 3.13 and start with the
best case, where both SAC baseline and Mult Clipped achieve a success rate of 100%.
Furthermore, the trajectories of the multiplicative version seem smoother and more
natural compared to the baseline. Another difference is that our approach strictly drives
with the front forward, whereas the baseline sometimes drives back first. This is shown
in the velocity plots, where a velocity smaller than zero means driving back-first. This is
potentially dangerous since the agent has a 60° blind spot in the back as shown in Fig. 3.7.
Note that the behavior of driving back or front first is an emerging behavior that was not
incentivized by the reward.

In the second-worst case, the behavior of occasionally driving back first causes the
baseline to crash, as can be seen in the bottom right corner of the trajectory plot. On the
other hand, our approach drives head-first and achieves a success rate of 96%. For the
4% of trajectories in which the agent crashes, there is an anomaly in the reward critic:
the estimated return is overly optimistic, especially close to obstacles. The worst case is
obtained with seed two, where the combination of driving back first and anomalies in the
value functions cause baseline and multiplicative agents to crash every second trajectory.
However, since the second-worse case achieves significantly higher performance, we
consider this second seed an outlier.

66 3 multiplicative value function

Figure 3.13: Qualitative results on Gazebo Gym with SAC after 200k steps. The Velocity, Value
Function, and Collision Probability plots show the corresponding metric at each third trajectory
point. The best and worst case distinction are with respect to the best and worst success rates out
of ten seeds.

3.g additional ablation studies 67

3.G Additional Ablation Studies

Finally, we want to show the effects of the choice of initial Lagrange multiplier λinit
and safety discount factor γc which is depicted in Fig. 3.14. For SAC in Fig. 3.14a,
the different choices of the initial Lagrange multiplier do not significantly affect the
performance at convergence but can result in different sample efficiencies. However,
Fig. 3.14b shows PPO is more sensitive where multipliers with magnitude five and higher
cause training instabilities with rising timeout rates. Note that in the stable-baselines3
implementation [185] upon which we build our code, the advantage in PPO is normalized
whereas the reward in SAC is not. This means that the different magnitudes of the
Lagrange multiplier have a greater effect on PPO than on SAC in Point Robot Navigation.

Furthermore, we experiment with different safety discount factors γc shown in Fig. 3.14c
and 3.14d. Both for SAC and PPO the safety discount factor seems to have little effect on
the performance. This can be explained by the fact that the “dynamics" of the point robot
allow for an instantaneous change of direction such that a short safety horizon with low
γc is sufficient for obstacle avoidance.

68 3 multiplicative value function

(a) Varying λinit for SAC Mult Lagrange, γc = 0.8

(b) Varying λinit for PPO Mult V1, γc = 0.8.

(c) Varying γc for SAC Mult Lagrange, λinit = 5.0.

(d) Varying γc for PPO Mult V1, λinit = 0.1.

Figure 3.14: Ablation experiments in point robot navigation.

4
TrafficBots: Towards World Models for
Autonomous Driving Simulation and
Motion Prediction

Data-driven simulation has become a favorable way to train and test autonomous driving
algorithms. The idea of replacing the actual environment with a learned simulator
has also been explored in model-based reinforcement learning in the context of world
models. In this work, we show data-driven traffic simulation can be formulated as a
world model. We present TrafficBots, a multi-agent policy built upon motion prediction
and end-to-end driving, and based on TrafficBots we obtain a world model tailored for
the planning module of autonomous vehicles. Existing data-driven traffic simulators
are lacking configurability and scalability. To generate configurable behaviors, for each
agent we introduce a destination as navigational information, and a time-invariant latent
personality that specifies the behavioral style. To improve the scalability, we present a
new scheme of positional encoding for angles, allowing all agents to share the same
vectorized context and the use of an architecture based on dot-product attention. As a
result, we can simulate all traffic participants seen in dense urban scenarios. Experiments
on the Waymo open motion dataset show TrafficBots can simulate realistic multi-agent
behaviors and achieve good performance on the motion prediction task.

4.1 Introduction

To realize autonomous driving (AD) in the urban environment, the planning module
of autonomous vehicles has to address highly interactive driving scenarios involving
human drivers, pedestrians and cyclists. Despite being a necessary step, the validation of
planning algorithms on public roads is often too expensive and dangerous. Therefore, sim-
ulations have been widely adopted and efforts have been made to develop photo-realistic
driving simulators [12]. While the full-stack simulators are popular for testing AD stacks
and training visuomotor policies, they are not the best choice for developing planning

This chapter was published as a conference article: Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu, Luc Van
Gool, “TrafficBots: Towards World Models for Autonomous Driving Simulation and Motion Prediction”, International
Conference on Robotics and Automation (ICRA), 2023, doi: 10.1109/ICRA48891.2023.10161243

69

https://ieeexplore.ieee.org/document/10161243

70 4 trafficbots

Non-reactive States

Differentiable
Observation

Generator

Planning
Module

(Player Agent) Static
Map

Dynamic
Traffic
Control

Bot Agents

Vehicle
Dynamics

Log
Replay

Scripted
Behavior

Learned
Behavior

Reactive States

Context Player Agent

Actions
e.g. acc,
steer

Observations
e.g. BEV image

Figure 4.1: World model for AD planning modules. The simulator is fully data-driven and
differentiable.

Shared Vectorized Context

Personality

Where to? How to?

Private Agent Attributes

Destination

Step t+1

Step tTrafficBots

Map, Traffic Lights, Agent States Shared Policy

Figure 4.2: TrafficBots, a multi-agent policy that generates realistic behaviors for bot agents by
learning from real-world data.

algorithms because the simulated scenarios are not as sophisticated and realistic as those
encountered in the real world. Moreover, the computationally demanding rendering is
redundant for AD planning modules that expect intermediate-level representations as
input.

Therefore, simulators tailored for AD planning should have a different design and rely
on real-world datasets. As shown in Fig. 4.1, the player agent, i.e., the planning module,
generates a motion plan by observing some intermediate-level representations. Then the
simulator updates its internal states and generates a new observation based on the actions
taken by the player agent. The internal states of the simulation can be separated into
two categories depending on whether they are reactive to the player agent. The scenario
contexts, including the map and traffic controls, are non-reactive states loaded from the
datasets. The states of the player agent are reactive and can be updated using vehicle
dynamics. Of the most importance for the simulation fidelity are the bot agents, i.e., the
non-player agents. The behaviors of bot agents fall into three categories: the non-reactive
log-replay, the scripted behavior based on heuristics, and the learned behavior which
is our focus. To generate human-like behaviors for bot agents, we present TrafficBots,
a multi-agent policy built upon two established research fields: multi-modal motion
prediction and end-to-end (E2E) driving.

As shown in Fig. 4.2, the TrafficBots policy is conditioned on the destination of each agent,
which approximates the output of a navigator available in the problem formulation of
E2E driving [35]. To learn diverse behaviors from demonstrations, each TrafficBot has
a personality learned using conditional variational autoencoder (CVAE) [207] following
multi-modal motion prediction. Compared to other methods, TrafficBots consume less
memory, scale to more agents, and run faster than real time. This is achieved by using

4.2 related work 71

a vectorized representation [158] for the context and sharing it among all bots. A new
scheme of positional encoding (PE) is introduced for angles such that the memory-efficient
dot-product attention can be used to retrieve local information from the shared context
that lies in the global coordinate.

Using TrafficBots and a differentiable observation generator, the simulator in Fig. 4.1 is
fully differentiable and it summarizes the player agent’s past experience, hence it can
be trained and used like a world model [117]. In this paper we focus on the TrafficBots
and leave the training of player agents as future work. We evaluate TrafficBots on both
the simulation and motion prediction tasks. We show that motion prediction can be
formulated as the a priori simulation, hence it is a legit surrogate task for the evaluation
of simulation fidelity. While prior works on traffic simulation introduce their own
metrics, baselines and datasets, evaluation with motion prediction ensures an open and
fair comparison. Although our performance is not comparable to the state-of-the-art
open-loop methods, TrafficBots shows the potential of solving motion prediction with a
closed-loop policy.

Our contributions are summarized as follows: We address data-driven traffic simulation
using world models and we present TrafficBots, a multi-agent policy built upon motion
prediction and E2E driving. We improve the simulation configurability by introducing
the navigational destination and the latent personality, as well as the scalability by
introducing a new PE for angles. Based on the public dataset and leaderboard, we
propose a comprehensive and reproducible evaluation protocol for traffic simulation. Our
repository is available at https://github.com/zhejz/TrafficBots

4.2 Related Work

World models [117] are action-conditional dynamics models learned from observational
data. As a differentiable substitute of the actual environment, world models can be used
for planning [118] and policy learning [119]. In this paper, we use world models to
address a new problem: traffic simulation. We seek to obtain a world model realistic
enough to replace the real world or full-stack simulators for developing AD planning
algorithms. Training world models is often formulated as a video prediction problem
such that the method can generalize to all image-based environments, like Atari [121] and
highway driving [122]. Although the same approach can be applied to urban driving via
rasterization, this would cause unnecessary complexity because most dynamics of driving
can be explicitly modeled without deep learning. In fact, only the decision-dynamics of
the bot agents that have a potential to interact with the player agent have to be learned.
To this end, we introduce the multi-agent policy TrafficBots and based on it we build a
world model for AD planning.

Motion prediction for AD is a popular research topic. Here we only discuss the most
relevant works and refer the reader to [166] for a detailed review. Our TrafficBots use a
network architecture based on Transformers [159] and vectorized representations [158]
because they achieve top performance [162, 208] while being computationally more effi-
cient [209]. To improve the multi-agent performance, our Transformer-based architecture
uses a new PE for angles. Goal-conditioning can improve the performance of AD plan-
ning [210, 211] and motion prediction [141, 142, 143, 144], but it leads to causal confusions

https://github.com/zhejz/TrafficBots

72 4 trafficbots

if applied to closed-loop policy. This problem is solved by replacing the goal, which is
associated with the prediction horizon, with the destination, which is time-independent
and emulates a navigator. Once conditioned on the destination, the behavior of TrafficBots
agent is characterized by a time-invariant personality. The personality is represented as
the latent variable of a CVAE, which is used to address the multi-modality of motion
forecasting [145, 146, 147, 148]. Unlike other works, we use a time-invariant personality,
i.e., a fixed sample is used throughout the simulation horizon. Finally, TrafficBots is
related to [155, 212, 213] in the sense that a recurrent policy is learned and combined with
vehicle dynamics. However, our method is recurrent and closed-loop, whereas motion
prediction methods are open-loop.

Data-driven simulation can reduce the sim-to-real gap while being more efficient and
scalable than manually developing a simulator. While many works on data-driven
simulation focus on the photo-realism [44, 91, 92], we study the behavior-realism of bot
agents. Compared to the hand-crafted rules [12, 97, 98], more realistic behaviors can
be generated through log-replay [99, 100] or learning from demonstrations [106]. The
problem of learning realistic behaviors is formulated as generative adversarial imitation
learning [49] in [105], as behavioral cloning in [109] and as flow prediction in [110].
Most related to our method is TrafficSim [18], an auto-regressive extension of the motion
prediction method ILVM [146]. Compared to our method, TrafficSim is not based on world
models or E2E driving, it uses rasterization and it does not factorize the uncertainty into
personality and destination. Finally, our simulation shown in Fig. 4.1 can be considered a
data-driven extension of SMARTS [101], and TrafficBots shown in Fig. 4.2 can be used as
a sub-module to control bot agents in other simulators [12, 98, 101].

4.3 Problem Formulation

We use motion prediction datasets to train a policy, which can be used for simulation if a
complete episode is given, and for motion prediction if only the history is available.

Data representation. Each episode in the motion prediction dataset includes the static
map M ∈ RNM×Nnode×4, traffic lights C ∈ RT×NC×4, agent states ŝ ∈ RT×NA×6 and agent
attributes u ∈ RNA×4, where NM is the number of map polylines, Nnode is the number of
nodes per polyline, NC is the number of traffic lights and NA is the number of agents.
We define t = 0 to be the current step, Th to be the history length and Tf to be the future
length. A polyline node or a traffic light is represented by (x, y, θ, u) where x, y are the
positions, θ is the yaw angle and u is the polyline type or light state. The ground truth
(GT) state of agent i at step t is denoted by ŝi

t = (x, y, θ, θ̇, v, a) where θ̇ is the yaw rate, v
is the speed and a is the acceleration. The time-invariant agent attribute u includes the
agent size and type of each agent. We use a scene-centric, vectorized representation [162]
to ensure the efficiency of the simulation.

Simulation. We denote the states of TrafficBots agents as s and the states of other agents,
including the player and other bots, as s†. Given a complete episode, we initialize the
simulation with the history t ∈ [−Th, 0] and rollout for the future steps t ∈ [1, Tf]. We
assume all uncertainties can be explained by the GT future, thus the simulation can
be formulated as predicting a single-modal next state st+1 given st and s†

t . Given the
GT future, the simulation has two formulations: counterfactual and a posteriori. In

4.4 trafficbots 73

counterfactual simulation the behavior of some agents, e.g. the player agent, might deviate
from the GT, i.e., s† ̸= ŝ†. In this case TrafficBots should be reactive to the change and
behave naturally. In the second case, if all agents are either controlled by TrafficBots or
log-replay agents, the simulation should ideally reconstruct the same episode. In the
spirit of world models, we refer to this as the a posteriori simulation.

Motion prediction. We formulate motion prediction as the a priori simulation, a special
case of the a posteriori simulation where TrafficBots control all agents and the GT is given
for t ∈ [−Th, 0]. In this case, rolling out for t ∈ [1, Tf] is equivalent to predicting s1:NA

1:Tf
,

the joint future of all agents. Since the GT future is unavailable and multiple futures are
possible given the same history, the a priori simulation is multi-modal and each rollout
represents one possible way of how the scenario could evolve. In fact, a priori simulation
is equivalent to the multi-modal joint future prediction, which is a more difficult and
hence less common task in comparison to the multi-modal marginal motion prediction
that considers the prediction independently for each agent.

4.4 TrafficBots

As shown in Fig. 4.3, the TrafficBots policy is conditioned on shared and private con-
texts which are encoded beforehand and explain all uncertainties, thus the rollout is
deterministic.

4.4.1 Policy

The policy predicts agent states at the next step st+1, based on the current states st and the
contexts. After encoding st, the contexts are sequentially injected into the encoded states
st. We use Transformer encoder layers with cross-attention to update st by attending
to the encoded map M and the encoded traffic lights Ct. The interaction Transformer
uses self-attention across the agent dimension to allow agents to attend to each other.
At inference time, states of non-TrafficBots agents s†

t will also be processed by these
Transformers such that TrafficBots can react to them. After incorporating the map, traffic
lights and states of other agents, each agent has a recurrent unit to aggregate its history
because the simulation states are not Markovian. Then the outputs are combined with
the agent’s individual destination and personality via concatenation and residual MLP.
Finally, the actions of each agent are predicted by the action heads and st+1 is computed
by the dynamics module based on the actions and st.

4.4.2 Contexts

State encoder. Following [162], all shared contexts, i.e., the map M, traffic lights C and
agent states s, are represented in the global coordinates and incorporated via dot-product
attention. This approach is computationally more efficient than transforming the global
information to the local coordinate of each agent. However, the dot-product attention
alone cannot efficiently model a global to local coordinate transform. To remedy this

74 4 trafficbots

Map :

Traffic Lights :

State Encoder

SHARED CONTEXT

Map Transformer: attention

Traffic Lights Transformer: attention

Interaction Transformer: attention

Temporal GRU: output

Combine Destination: concat, MLP, residual sum

Personality or :

Polyline Subgraph Transformer:
attention
Nodes Max Pool: output
Global Graph Transformer:
attention

State Encoder
Encoded Traffic Lights :

Current States of TrafficBots :

State Encoder

Encoded States :

Encoded Map :

Combine Personality: concat, MLP, residual sum
Destination or :
Reached Indicator:

Action Heads

Next States

(At inference time) States of Other Agents

POLICY

PRIVATE CONTEXT

(At inference time) Encoded States

Dynamics

Figure 4.3: Network architecture of TrafficBots. In the brackets are the tensor shapes where B is
the batch size. The hidden/feature dimensions are omitted for conciseness. The shared and private
contexts are encoded only once at the start of an episode.

issue, PE is introduced. Without PE, VectorNet [158] has to transform all contexts to the
local coordinate of each agent. SceneTransformer [162] concatenates the PE for position
with the unit vector for direction and other attributes u, and then feeds it to an MLP:

s = MLP(cat(PE(x), PE(y), cos θ, sin θ, u)), (4.1)

with PE2i(x) = sin(x ·ω
2i

demb), PE2i+1(x) = cos(x ·ω
2i

demb),

where i ∈ [0, . . . , demb/2], ω is the base frequency and demb is the embedding dimension.
This state encoder can be improved by using PE also for the direction vector [214] and
adding the PE after the MLP [159]. This ends up with

s = cat(PE(x), PE(y), PE(cos θ), PE(sin θ)) + MLP(u). (4.2)

However, empirically we observe TrafficBots using this state encoder is not sensitive to
directional information. To address this issue, we propose the following state encoder

s = cat(PE(x), PE(y), AE(θ), MLP(u)) (4.3)

with AE2i(θ) = sin(θ · i), AE2i+1(θ) = cos(θ · i)

where i ∈ [1, . . . , demb/2 + 1] and AE stands for angular encoding, a special case of
sinusoidal PE we introduced to encode the radian yaw θ. Compared to PE that has to
use a small ω to avoid overloading the 2π period, AE can use integer frequency because
it encodes an angle. Moreover, the addition is replaced by concatenation because other
states, e.g. velocity, are highly correlated to the pose encoded by PE and AE. We use
the state encoders to encode the map, traffic lights and agent states. Our map encoder
follows [158], except that we use Transformers for the polyline sub-graph.

Destination. Fig. 4.4 highlights the difference between our destination and the goal
proposed in prior works [141, 142, 143, 144]. The GT goal, which is associated to the
last observed position, does not reflect an agent’s intention. In Fig. 4.4, the vehicle stops
because of the red light, whereas the pedestrian does not intend to stay in the middle
of a crosswalk. Although this is not a problem for open-loop motion prediction, the
driving policy would learn a wrong causal relationship if conditioned on the goal. This

4.4 trafficbots 75

Destination

Goal

Goal

Destination

Figure 4.4: GT destination and goal of the magenta agent.

problem can be solved by introducing a navigator, which specifies the next goal once
the current one is reached. However, running an online navigator for every agent is
computationally demanding. For simulation with a short horizon and small maps, it is
sufficient to estimate one destination for the near future, and switch to an unconditioned
policy once that destination is reached. Since the GT destination is not available in any
motion prediction datasets, we approximate it with a map polyline heuristically selected
by extending the recorded agent trajectory based on the map topology. For training and
simulation we use the approximated GT destination ĝ, whereas for motion prediction
we predict g. Predicting the destination is formulated as a multi-class classification task
where the logit for polyline i and agent j is predicted by MLP(cat(Mi , GRU(sj

−Th :0))),
i.e., the destination of an agent depends only on the map and its own history.

Personality. In order to address the remaining uncertainties not explained by the desti-
nation and to learn diverse behaviors of different human drivers, pedestrians and cyclists,
we introduce a latent personality for each agent which is learned using CVAE. Similar
ideas have been applied to world models [117, 118, 119] and motion prediction [145,
146, 147]. The personality encoder has a similar architecture as the policy network in
Fig. 4.3. For training and simulation, we use the posterior zpost which is estimated from
the complete episode t ∈ [−Th, Tf], whereas for motion prediction we use the prior zprior
that encodes only the history t ∈ [−Th, 0]. In contrast to TrafficSim [18] which updates
the latent at each time step to address all uncertainties, our personality is time-invariant
because the behavioral style of an agent will not change in a short time horizon if the
destination is determined.

76 4 trafficbots

4.4.3 Training

Similar to world models [117], our training uses reparameterization gradients and back-
propagation through time (BPTT). Given a complete episode, we first encode the map M,
traffic lights C and GT agent states ŝ. Then we predict zpost, zprior and the destination
g. Conditioned on the GT destination ĝ and a sample of zpost we rollout the policy.
For t ∈ [−Th, 0] we warm-start using teacher-forcing with GT agent states, whereas for
t ∈ [1, Tf] the rollout is auto-regressive. All components are trained simultaneously using
the weighted sum of three losses: the reconstruction loss with smoothed L1 distance for
the states (x, y, θ, v), the KL-divergence between zpost and zprior clipped by free nats [118],
and the cross-entropy loss for destination prediction. Following [119], we stop the
gradient from the action and allow only the gradient from the states during the BPTT. We
train with all agents so as to generate realistic behaviors for all traffic participants, not
just for the interested ones heuristically selected by the dataset.

4.4.4 Implementation Details

We use a 16-dim diagonal Gaussian for the personality. The action heads and dynamics
have the same architecture but different parameters for vehicles, cyclists and pedestrians.
We use a unicycle model with constraints on maximum yaw rate and acceleration for all
types of agents. With a hidden dimension of 128 our model has less than 3M parameters.
Considering 64 agents, 1024 map polylines and a sampling time of 0.1 second, we can
parallelize 16 simulations on one 2080Ti GPU while each rollout step takes around 10 ms,
which is a magnitude faster than other methods [18, 105, 109, 110].

4.5 Experiments

Dataset. We use the Waymo Open Motion Dataset (WOMD) [134] because compared
to other datasets it has longer episode lengths and more diverse and complex driving
scenarios, such as busy intersections with pedestrians and cyclists. The WOMD is also
one of the largest motion prediction datasets, consisting of 487K episodes for training,
44K for validation and 45K for testing. With a fixed sampling time of 0.1 second, each
episode is 9 seconds long and contains 91 steps: Th = 10 for the history, one for the
current t = 0, and Tf = 80 future steps that shall be predicted.

Tasks. Ultimately we want to verify the fidelity of the counterfactual simulation, such that
the simulator can be used for training and testing planning modules. However, once the
scenario diverges from the factual recording, the GT trajectories can no longer be used
for evaluation metrics. To this end, different surrogate metrics have been proposed, such
as traffic rule compliance [18] and distribution of curvatures [105]. But these metrics
cannot fully reflect the behavioral fidelity because they consider only vehicles and neglect
pedestrians and cyclists. Moreover, performing well on these metrics does not mean the
behavior is human-like, in fact good performance can be achieved by a hand-crafted policy.
Alternatively we can verify the fidelity of the a posteriori simulation, where the scenario
should be reconstructed and the performance can be quantified by the distance to the

4.5 experiments 77

test
mAP

↑
min

ADE ↓
min

FDE ↓
miss

rate ↓
overlap

rate ↓

DenseTNT [142] 0.328 1.039 1.551 0.157 0.178

SceneTransformer [162] 0.279 0.612 1.212 0.156 0.147

MultiPath [149] static 0.236 0.880 2.044 0.345 0.166

Waymo LSTM [134] 0.176 1.007 2.355 0.375 0.190

TrafficBots (a priori) 0.212 1.313 3.102 0.344 0.145

valid TrafficBots ↑ ↓ ↓ ↓ ↓

a priori (K=6) 0.210 1.291 3.117 0.346 0.143

GT sdc future (what-if) 0.214 1.281 3.095 0.342 0.142

GT traffic light (v2x) 0.209 1.288 3.100 0.345 0.143

GT destination (v2v) 0.217 1.292 3.123 0.345 0.142

a posteriori (K=1) 0.332 0.962 2.034 0.339 0.129

Table 4.1: Results on the WOMD (marginal) leaderboard.

GT trajectories. But since the GT future is given, a model can achieve good performance
by misusing the posterior latent to memorize the GT future, instead of learning the
underlying human-like behavior. In fact, the best possible performance can be simply
achieved via log-replay. We argue the a priori simulation, i.e., motion prediction, together
with the a posteriori simulation is a better evaluation setup. For a priori simulation, the
model predicts multiple futures of how an episode might evolve. While all predictions
should demonstrate natural behaviors, at least one of them should reconstruct the GT
future. Importantly, motion prediction is usually formulated as an open-loop problem.
Although TrafficBots can be used for motion prediction by formulating it as the a priori
simulation, the performance will be affected by the covariant shift and compounding
errors [11] caused by the closed-loop rollout. Nevertheless, we show the potential of
solving motion prediction with a multi-agent policy.

Metrics. For motion prediction we follow the metrics of WOMD [134], including the
accuracy metrics mAP, the distance-based minADE/FDE and miss rate, and the surrogate
metric overlap rate. Inspired by [148], we further examine the sampling-based negative
log-likelihood (NLL) of the GT scene. The WOMD specifies up to 8 agents that shall be
predicted and allows up to K=6 predictions. Accordingly, we generate 6 rollouts, i.e.,
the joint future of all agents, by sampling the destination and the prior personality. For
a posteriori simulation, only one rollout is generated using the most likely posterior
personality and the GT destination. The simulation fidelity is evaluated using traffic rule
violation rate and distance to GT trajectories. The differences in position and rotation are
averaged over all steps and agents, whereas the rates of collision, running a red light and
passiveness (stop moving for no reason) are for vehicles only.

78 4 trafficbots

Comparison with motion prediction methods. In the first half of Table 4.1 we com-
pare TrafficBots with open-loop motion prediction methods on the Waymo (marginal)
motion prediction leaderboard. In terms of mAP we are better than the Waymo LSTM
baseline [134], but worse than other methods because TrafficBots is not optimized to
generate diverse predictions which is favored by the mAP metrics. Although the miss
rates are comparable, the minADE/FDE of our method are significantly higher than other
methods. This can be explained by the compounding errors caused by the auto-regressive
policy rollout. While this drawback is well-known for closed-loop methods, TrafficBots
still has its advantage which is shown by the reduced overlap rate. Compared to the
open-loop methods, it is easier for a policy to learn the correct causal relationship. The
second half of Table 4.1 shows that the prediction performance can be improved given
additional information. Since the predictions are generated via rollout, we can set some
of the future observations to their GT. For example, for conditional motion prediction
(what-if) the future trajectory of the self-driving-car is given. Furthermore, the future
traffic light states and the destinations could be obtained via vehicle-to-everything (v2x)
or vehicle-to-vehicle (v2v) communication. Having access to all future information, the a
posteriori simulation achieves the best performance with a single (K=1) prediction.

Ablations. We ablate the state encoders, personality, destination and world-model train-
ing techniques on the a priori simulation in Table 4.2, and on the a posteriori simulation
in Table 4.2. Our state encoder Eq. 4.3 with AE performs overall better than Eq. 4.1
and Eq. 4.2. Without the personality, the policy is unable to capture the diverse behaviors
of different traffic participants. If we allow a larger KL divergence by downweighting
the KL loss, the performance is better for a posterior simulation but worse for motion
prediction. Then we have TrafficBots w/o destination where the latent captures all un-
certainties. In this case the model performs worse on motion prediction because the
Gaussian latent suffers from mode averaging. If the policy is conditioned on the goal,
i.e., the polyline associated with the last observed pose, then the model will learn a
wrong causal relationship and the traffic rule violation rates will increase even though
the minADE/FDE are smaller. If we use the goal w/o navigator module that drops the
goal once it is reached, the policy learning will fail completely and the performances
are overall inferior. Finally, we show world-model training techniques can improve the
performance of TrafficBots. To further compare with prior works on traffic simulation,
we ablate more design differences between our method and SimNet [109], which uses
behavioral cloning (BC) without personality or destination, as well as TrafficSim [18].
Generally, TrafficBots performs better but there are three interesting exceptions: Firstly,
if we allow a larger KL or resample pers., the posterior will memorize the GT future and
the prior will fail to infer the personality. Consequently the model performs better for a
posterior simulation but worse for motion prediction, and the traffic rule violation rates
are higher because the model masters the memorization rather than the driving skills.
This highlights the importance of using a time-invariant personality and the advantage
of evaluating with both a priori and a posteriori simulation. Secondly, models without
personality have smaller NLL. This is reasonable because models without CVAE generate
less diverse predictions, hence the NLL is smaller. Finally, the model with an interactive
decoder following TrafficSim [18] shows a smaller miss rate during a posteriori simulation.
This is achieved by adding the private contexts before the interaction Transformer, such
that private contexts are shared among all agents. However, this requires the personality

4.5 experiments 79

mAP

↑
min

ADE ↓
min

FDE ↓
miss

rate ↓
overl.

rate ↓
NLL ↓
(×10−7)

Our best TrafficBots 0.18 1.49 3.66 0.39 0.15 1.37

Encoder
Eq. 4.1 0.12 1.74 4.48 0.48 0.18 1.90

Eq. 4.2 0.14 1.62 4.12 0.46 0.17 1.48

Personality
w/o persona 0.06 1.66 4.09 0.48 0.15 1.16

larger KL 0.15 1.65 4.19 0.42 0.17 1.88

Destination
w/o dest. 0.16 1.53 3.80 0.40 0.15 1.44

goal 0.17 1.47 3.44 0.40 0.16 2.02

goal w/o navi 0.14 1.57 3.83 0.45 0.17 3.39

World Model
w/o free nats 0.18 1.52 3.74 0.40 0.16 1.39

w/ action grad. 0.17 1.51 3.71 0.41 0.16 1.39

SimNet
BC w/o pers. & dest. 0.01 2.76 7.77 0.76 0.21 2.64

w/o pers. & dest. 0.02 1.91 4.95 0.55 0.15 1.10

BC 0.09 3.11 9.24 0.73 0.21 3.34

TrafficSim
w/o dynamics 0.14 1.81 4.37 0.46 0.17 1.68

inter. decoder 0.17 1.52 3.73 0.41 0.16 1.66

resample pers. 0.14 1.81 4.74 0.47 0.16 1.56

Table 4.2: Ablation on the WOMD validation split, a priori simulation K=6 (motion prediction).
All models are trained for 24K iterations (48 hours).

and destination of all agents to be known before the rollout, which is infeasible if the
simulation includes a player agent whose future actions are undetermined.

80 4 trafficbots

dif. pos

(m) ↓
dif. rot

(deg) ↓
veh col

(%) ↓
run red

(%) ↓
passive

(%) ↓
miss

rate ↓

Our best TrafficBots 0.80 2.84 11.5 1.31 19.1 0.42

Encoder
Eq. 4.1 0.74 3.05 14.7 1.47 19.4 0.49

Eq. 4.2 0.74 3.02 13.8 1.46 19.3 0.48

Personality
w/o persona 1.29 3.63 13.6 1.50 19.2 0.53

larger KL 0.47 2.39 12.9 1.56 19.1 0.24

Destination
w/o dest. 0.74 2.63 11.8 1.29 19.3 0.41

goal 0.78 2.68 12.3 1.35 20.2 0.42

goal w/o navi 0.79 2.97 15.1 1.40 23.3 0.49

World Model
w/o free nats 0.86 3.00 12.6 1.31 19.1 0.44

w/ action grad. 0.90 2.82 12.6 1.30 19.1 0.46

SimNet
BC w/o pers. & dest. 2.27 7.37 21.9 1.59 19.6 0.76

w/o pers. & dest. 1.34 3.69 13.6 1.46 19.2 0.54

BC 2.99 7.56 33.4 4.27 19.3 0.76

TrafficSim
w/o dynamics 0.72 55.18 48.0 1.73 18.9 0.45

inter. decoder 0.75 2.85 12.8 1.46 19.2 0.22

resample pers. 0.49 2.45 12.8 1.55 19.5 0.29

Table 4.3: Ablation on the WOMD validation split, a posteriori simulation K=1. All models are
trained for 24K iterations (48 hours).

4.5 experiments 81

(a) A vehicle entering the parking lots.

(b) A cyclist crossing the road through the crosswalk.

Figure 4.5: Qualitative results of TrafficBots. In each sub-figure, left: predicted trajectories; right:
heat map of predicted destinations. Agent of interest and GT are in magenta. A priori predictions
are in cyan. A posteriori simulated trajectory is in yellow. The brightness is proportional to the
probability in the destination heat map.

82 4 trafficbots

Qualitative results. Fig. 4.5 shows two examples of the prediction and simulation results.
In both cases, one of the a priori predictions matches the GT, whereas the a posteriori
simulation reconstructs the scenario with less deviation. With similar destinations but
sampled personalities, five predictions in Fig. 4.5a follow the lane with different speeds
and lane selections. With predicted destinations on both sides of the road, the cyclist in
Fig. 4.5b is predicted to either cross the road or follow the road edge.

4.6 Conclusions and Future Works

This paper presented TrafficBots, a multi-agent policy learned from motion prediction
datasets. Based on the shared, vectorized context and the individual personality and
destination, TrafficBots can generate realistic multi-agent behaviors in dense urban
scenarios. Besides the simulation, TrafficBots can also be used for motion prediction.
Evaluating on motion prediction tasks allows us to verify the simulation fidelity and
benchmark on a public leaderboard. Based on TrafficBots, we build a differentiable, data-
driven simulation framework, which in the future can serve as a platform to develop AD
planning algorithms, or as a world model to train E2E driving policies via reinforcement
learning [35] or model-based imitation learning [99]. Moreover, TrafficBots could also be
integrated as a module to generate human-like behaviors for bot agents in a game or a
full-stack AD simulator. Future work will investigate better network architectures and
training techniques, the downstream tasks, and combining data-driven traffic simulation
with neural rendering.

4.a supplementary video 83

Appendices

4.A Supplementary Video

The supplementary video for the paper is found here at https://youtu.be/2idvJOqbXeo.
This video contains more experimental results generated by TrafficBots. The video is
nicely edited and exhaustively commented. It includes two episodes, the first episode
highlights a vehicle making an U-turn on a narrow street, whereas the second episode is
at a busy intersection with traffic lights and a large number of traffic participants. For
each episode, we first show the results of a posteriori simulation and a priori motion
prediction, and then we inspect agents demonstrating the most interesting behaviors.
Besides the good cases, this video also presents the bad cases where our method failed to
generated realistic behavior.

4.B Dataset and Pre-Processing

We use the unfiltered 9-second datasets (scenario, not the filtered tf_example) from the
WOMD, these are: testing, testing_interactive, training, validation, validation_interactive.
The WOMD also provides a full-length training dataset training_20s, which includes the
original 20-second-long episodes. In contrast to the 9-second datasets which are clipped
from the 20-second-long episodes, episodes in the training_20s do not always have a fixed
length. Although we did not use the 20-second dataset, future works can take advantage
of it for simulation with a longer time horizon. We pre-process the dataset by first filtering
the map polylines:

1. Split the original map polylines into shorter polylines with maximum Nnode = 20
nodes one meter away from each other.

2. Remove polylines too far away from any agents.

3. Remove polylines that contain too few nodes.

4. Continue removing polylines based on the distance to agents, until the number of
remaining polylines is smaller than a threshold NM = 1024.

Then we filter the traffic lights which are associated with map polylines. A traffic light
will be filtered if its map polyline is removed. Finally we filter agents as follows:

1. Remove agents that are tracked for too few steps.

2. Remove agents that have small displacement and large distance to any of the
relevant agents marked by the WOMD or any of the map polylines. These agents
are mostly parking vehicles.

3. Remove vehicles that have small displacement but large yaw change, which are
caused by tracking errors.

4. Continue removing irrelevant agents based on the distance to relevant agents, until
the number of remaining agents is smaller than a threshold NA = 64.

https://youtu.be/2idvJOqbXeo

84 4 trafficbots

After the filtering, we center the episode such that the position of the self-driving-car
is at (0, 0). The training episodes are randomly rotated by an angle between −π and
π, whereas the validation and testing episodes are unaffected. We smooth the agent
trajectories and fill in the missing steps via temporal linear interpolation. A pre-processed
episode has T = 91 steps and includes the following data:

1. Agent states

• agent/valid: [T, NA], Boolean mask.

• agent/pos: [T, NA, 2], x, y positions.

• agent/vel: [T, NA, 2], velocities in x, y directions.

• agent/spd: [T, NA, 1], m/s

• agent/acc: [T, NA, 1], m/s2

• agent/yaw_bbox: [T, NA, 1], rad.

• agent/yaw_rate: [T, NA, 1], rad/s.

2. Agent attributes

• agent/type: [NA, 3]; vehicle, pedestrian, cyclist.

• agent/role: [NA, 3], 3 types of role; self-driving-car, agent of interest, agent to
predict.

• agent/size: [NA, 3], length, width, height.

3. Map

• map/valid: [NM, Nnode], Boolean mask.

• map/type: [NM, 11], 11 types of polylines. They are freeway, surface_street,
stop_sign, bike_lane, road_edge_boundary, road_edge_median, solid_single,
solid_double, passing_double_yellow, speed_bump and crosswalk.

• map/pos: [NM, Nnode, 2], x, y position of nodes.

• map/dir: [NM, Nnode, 2], a 2D vector pointing to the next node.

4. Stop point of traffic lights

• tl_stop/valid: [T, NC], Boolean mask.

• tl_stop/state: [T, NC, 5], 5 types of states; unknown, stop, caution, go and
flashing.

• tl_stop/pos: [T, NC, 2], position of the stop point.

• tl_stop/dir: [T, NC, 2], direction of the stop point.

4.C Ground-Truth Destination

The GT destinations are not available in any motion prediction datasets. Therefore, we
use the following heuristics to approximate the GT destination of an agent:

4.d detailed network architecture 85

Position
Unit Direction

Other States

MLPcat

Position

Unit Direction

Other States

MLP

Position

Unit Direction

Other States MLP

cat

Position

Radian

Other States MLP

cat

VectorNet: wihtout PE SceneTransformer: input dir Ours Eq. 3: add PE dir Ours Eq. 4: cat AE

Figure 4.6: State encoders with different architectures.

• If the agent is a vehicle on a lane, i.e. the last observed pose of the agent is
close enough to a driving lane in terms of position and direction, then we find
the destination by randomly selecting one of the successors of that lane base on
the map topology. This step will be repeated multiple times. These agents are
vehicles driving on the road. In this case the type of the destination is either freeway,
surface_street or stop_sign.

• If the agent is a vehicle not on lane, then we extend the last observed pose with
constant velocity for 5 seconds. After that the road_edge_boundary polyline closest to
that extended position will be selected. These agents are mostly vehicles in parking
lots.

• For cyclists on bike lanes, we extend the last position with constant velocity and
find the closest bike_lane.

• For cyclists not on bike lanes or pedestrians, we find the road_edge_boundary
polyline closest to the position extended using constant velocity.

For the ablation we have a model trained with goal instead of destination. In this case the
goals are still polylines and the GT goals are still approximated using the aforementioned
method, with the exception that we do not extend the last observed position using map
topology or constant velocity. The map polyline closest to the last observed position will
be directly used as the goal. Unlike motion prediction methods [141, 142] that predict an
accurate goal and then simply fit a smooth trajectory towards the goal, our destination
is less informative such that the motion profile is determined solely by the policy. The
destinations are pre-processed and saved as agent attributes agent/dest : [NA]. We save
the indices of the corresponding map polyline, hence the value of agent/dest ranges from
1 to NM.

4.D Detailed Network Architecture

We use dropout probability 0.1 and ReLU activation.

State Encoders. The architecture of the state encoders discussed in the main paper are
visualized in Fig. 4.6.

Transformers. We use the Transformer encoder layer with cross-attention as shown in
Fig. 4.7. The layer norm is inside the residual blocks [215]. If the query, key and value
share the same tensor, then the cross-attention boils down to self-attention which is used
by the interaction Transformer.

86 4 trafficbots

Query: Key, Value:

Layer Norm Layer Norm

Multi-Head Attention
Attn Mat Shape:

Add

Layer Norm

2-Layer MLP

Add

Output:

Figure 4.7: Transformer encoder layer with pre-layer-norm.

Combine Personality and Destination. As shown in Fig. 4.8, the personality, or the
destination, is injected to the intermediate state via concatenation, MLP and residual
sum. Since the personality is always valid, the masking is unnecessary for combining
personality. In terms of destination, the masking is based on a reached indicator. If the
destination is reached, then the output of the residual block will be masked such that the
intermediate states remain unchanged and the destination no longer affects the policy.

Action Heads. We use a two-layer MLP to predict the acceleration and the yaw rate
of each agent. We instantiate three action heads with the same architecture; one for
each type of agent. The outputs of action heads are normalized to [−1, 1] via the tanh
activation.

Dynamics. Following MultiPath++ [166] we use a unicycle dynamics with constraints on
maximum yaw rate and acceleration for all types of agents. For vehicles the acceleration
is limited to ±5 m/s and the yaw rate is limited to ±1.5 rad/s. For cyclists we use
±6 m/s, ±3 rad/s and for pedestrians ±7 m/s, ±7 rad/s. The outputs of action heads
are multiplied by the maximum allowed acceleration or yaw rate to obtain the final
actions.

Personality Encoder. The inputs to the map, traffic lights and interaction Transformer
of the personality encoder are reshaped differently. For the map encoder, we flatten
the agent states tensor with shape [B, T, NA] to [B, T × NA] and use it to query the map
with shape [B, NM]. This allows each agent at each time step to attend to the map
independently. For the traffic lights Transformer, the agent states tensor with shape
[B, T, NA] is flattened to [B× T, NA] and the traffic lights with shape [B, T, NC] is flattened
to [B× T, NC]. In this case, the agents states can only attend to the traffic lights from
the same time step. Similarly, inputs to the interaction Transformer are reshaped from
[B, T, NA] to [B× T, NA], such that an agent can only attend to other agents’ states from

4.e training details 87

Persona. or Dest. Intermediate States

Concat Last Dim

2-Layer MLP

Add

Output:

Masking

Reached Indicator for Destination

Figure 4.8: Combine personality/destination.

the same time step. We use two personality encoders with the same architecture to encode
the posterior and the prior personality respectively.

Latent Distribution of Personality. The personality encoder predicts the mean of a
16-dimensional diagonal Gaussian for each agent. The standard deviation is a learnable
parameter independent of any inputs. We initialize the log standard deviation to −2 for
all the 16 dimensions. The standard deviation parameter is shared by agents from the
same type (vehicle, pedestrian, cyclist).

Predicting Destinations. The destination of agent j depends only on the encoded map
M and its own encoded history states sj

−Th :0. Given Mi , the hidden feature of the ith

polyline of the encoded mapM, the logit pj
i for polyline i and agent j is predicted by

pj
i = MLP(Mi , GRU(sj

−Th :0)), where i ∈ {1, . . . , NM}, j ∈ {1, . . . , NA}.

Based on these logits, the destinations of agent j are represented by a categorical dis-
tribution with NM classes and the probability is obtained via softmax. After obtaining
the polyline index i, the predicted destination g is the encoded polyline feature Mi

indexed by i. The polyline indices of the GT destinations are saved during the dataset
pre-processing.

4.E Training Details

We use six 2080Ti GPUs for the training with a batch size of 4 on each GPU, i.e. the
total batch size is B = 24. Due to the large size of the WOMD training dataset, in each
epoch we randomly select 15% from the complete training and validation datasets. We

88 4 trafficbots

use the Adam optimizer with a learning rate of 4e-4. The learning rate is halved every 7
epochs. The model converges after about 30 epochs, that is almost a week. We predict
the posterior personality zpost using the posterior personality encoder and information
from t ∈ [−Th, Tf]. Similarly zprior is predicted using the prior personality encoder and
information from t ∈ [−Th, 0]. The logits of destinations are predicted using the encoded
mapM and the GT agent states ŝ−Th :0 from the past. From the logits we use softmax to

obtain a multi-class categorical distribution of the destination of each agent P1:NA
dest , which

has NM classes; one for each map polyline. During the training we rollout with the GT
destination and the posterior personality zpost. Our training loss has the following terms:

1. Reconstruction loss, which trains the model to reconstruct the GT states using the
posterior personality and the GT destination. It is a weighted sum of:

• A smoothed L1 loss between the predicted (x, y) positions and the GT posi-
tions.

• A cosine distance between the predicted yaw θ and the GT yaw θ̂, i.e. 0.5 ·
(1− cos(θ − θ̂)).

• A smoothed L1 loss between the predicted velocity and the GT velocity.

2. The KL divergence between the posterior and the prior personality, which trains
the prior to match the posterior and regularize the posterior at the same time. We
use free nats [118] to clip the KL divergence, i.e. if KL(zpost, zprior) is smaller than
the free nats, then the KL loss is not applied. We use a free nats of 0.01.

3. The cross entropy loss for destination classification. Since the GT destination is a
single class, this loss boils down to a maximum likelihood loss, i.e. the destination
distribution is trained to maximize the log-likelihood of the polyline index of the
GT destination.

4.F Inference Details

We use the GT destination and the most likely posterior personality for the a posteriori
simulation, hence the simulation is single modal in this case. For a priori simulation, i.e.
motion prediction, we generate multiple modes by randomly sampling the destination
distribution and the prior personality of each agent. For WOMD we generate K = 6
predictions. The first mode K0 is deterministic, which is generated using the most likely
destination and prior personality. We use this mode to inspect the most likely mode of
the joint future prediction. The score of each prediction, which is required by the WOMD
leaderboard, is the joint probability of the destination and the personality. We normalize
the score using softmax with temperature. The scores are computed with respect to
agents, not the joint future of all agents. For motion prediction where the future traffic
light states are not available, we use the last observed (i.e. from the current step t = 0)
light states for all prediction steps.

4.g more experimental results 89

test
soft

mAP ↑
mAP

↑
min

ADE ↓
min

FDE ↓
miss

rate ↓
overlap

rate ↓

DenseTNT N/A 0.165 1.142 2.490 0.535 0.231

SceneTransformer (J) N/A 0.119 0.977 2.189 0.494 0.207

Air2 N/A 0.096 1.317 2.714 0.623 0.247

HeatIRm4 N/A 0.084 1.420 3.260 0.722 0.284

Waymo LSTM N/A 0.052 1.906 5.028 0.775 0.341

TrafficBots (a priori) 0.113 0.111 1.669 4.514 0.681 0.220

valid TrafficBots
soft

mAP ↑
mAP

↑
min

ADE ↓
min

FDE ↓
miss

rate ↓
overlap

rate ↓

a priori (K=6) 0.102 0.100 1.670 4.514 0.677 0.221

GT sdc future (what-if) 0.110 0.108 1.577 4.317 0.651 0.215

GT traffic light (v2x) 0.102 0.100 1.663 4.485 0.675 0.221

GT destination (v2v) 0.106 0.103 1.640 4.440 0.668 0.223

a posteriori (K=1) 0.188 0.188 1.085 2.313 0.602 0.165

Table 4.4: Performance on the Waymo (joint) interactive prediction leaderboard.

4.G More Experimental Results

In Table 4.4 we compare TrafficBots with other open-loop motion prediction methods on
the Waymo (joint) interactive prediction leaderboard, where the joint future of exactly
two agents shall be predicted and the metrics are evaluated at the scene-level, i.e. for
both agents at the same time. For a more detailed description on the task and the metrics,
please refer to the publication [134] or the homepage of the WOMD. Since our method
is essentially solving the joint future prediction, TrafficBots significantly outperforms
the baselines on this task. As shown in Table 4.4, we achieve overall better performance
than the LSTM baseline [134]. TrafficBots also perform better than HeatIRm4 [216], the
winner of the 2021 WOMD challenge, and Air2 [217], the honorable mention of the 2021
WOMD challenge, in terms of the mAP and the overlap rate, which are the most relevant
metrics used for the ranking. Our performance is comparable to SceneTransformer (J),
the joint version of SceneTransformer [162]. Compared to DenseTNT [142], we achieve
a lower overlap rate. As discussed in the main paper, our method suffers from larger
minADE/FDE and the performance can be improved given additional GT information.
These trends are also observed in Table 4.4. Although the (joint) interactive prediction
is a more favorable task for our method, we do not include Table 4.4 in the main paper
because this leaderboard is partially deprecated and hence less active, and the predictions
are restricted to two agents which significantly limits its application in the real world.

5
Real-Time Motion Prediction via Het-
erogeneous Polyline Transformer with
Relative Pose Encoding

The real-world deployment of an autonomous driving system requires its components
to run on-board and in real-time, including the motion prediction module that predicts
the future trajectories of surrounding traffic participants. Existing agent-centric methods
have demonstrated outstanding performance on public benchmarks. However, they
suffer from high computational overhead and poor scalability as the number of agents to
be predicted increases. To address this problem, we introduce the K-nearest neighbor
attention with relative pose encoding (Knarpe), a novel attention mechanism allowing the
pairwise-relative representation to be used by Transformers. Then, based on Knarpe we
present the Heterogeneous Polyline Transformer with Relative pose encoding (HPTR), a
hierarchical framework enabling asynchronous token update during the online inference.
By sharing contexts among agents and reusing the unchanged contexts, our approach
is as efficient as scene-centric methods, while performing on par with state-of-the-art
agent-centric methods. Experiments on Waymo and Argoverse-2 datasets show that
HPTR achieves superior performance among end-to-end methods that do not apply
expensive post-processing or model ensembling. The code is available at https://github.
com/zhejz/HPTR.

5.1 Introduction

Motion prediction is an important component of modular autonomous driving stack [2].
As the downstream module of perception [182, 218, 219] and the upstream module of
planning [100, 220, 221], the task of motion prediction [134, 135] is to predict the multi-
modal future trajectories of other agents next to the self-driving vehicle (SDV) based
on the heterogeneous observations, including for example high-definition (HD) maps,
traffic lights and other vehicles, pedestrians and cyclists. This is an essential task because

This chapter was published as a conference article: Zhejun Zhang, Alexander Liniger, Christos Sakaridis, Fisher Yu,
Luc Van Gool, “Real-Time Motion Prediction via Heterogeneous Polyline Transformer with Relative Pose Encoding”,
Advances in Neural Information Processing Systems (NeurIPS), 2023, doi: 10.3929/ethz-b-000643424

91

https://github.com/zhejz/HPTR
https://github.com/zhejz/HPTR
https://proceedings.neurips.cc/paper_files/paper/2023/hash/b37c2e26b75ee02fcabd65a2a0367136-Abstract-Conference.html

92 5 hptr

(a) Dense traffic scenario (b) Agent-centric ROIs (c) Online inference (d) Trajectory aggregation

Figure 5.1: To efficiently predict the multi-modal future of numerous agents in dense traffic (5.1a),
HPTR minimizes the computational overhead by: (5.1b) Sharing contexts among target agents.
(5.1c) Reusing static contexts during online inference. (5.1d) Avoiding expensive post-processing
and ensembling.

without accurate and real-time prediction results [222], the planning module cannot safely
and comfortably navigate the SDV through highly interactive driving environments.

To achieve top performance on public motion prediction leaderboards [137, 138], state-of-
the-art (SOTA) methods [164, 165, 166, 167] leverage agent-centric vectorized representa-
tions and Transformer-based network architectures. However, the good performance of
these approaches comes at a cost of high computational overhead as illustrated in Fig-
ure 5.1. The most well-known problem of agent-centric approaches is the poor scalability
as the number of target agents grows in urban driving environments with dense traffic;
for example the busy intersection in Figure 5.1a. Although the agent-centric regions of
interest (ROI) in Figure 5.1b are largely overlapping, the same context is transformed to
the coordinate system of each target agent and independently saved and processed. This
causes a huge waste of computational resources, which is often neglected by prior works
because their experiments focus on offline inference that queries the prediction only once
given a scenario from the dataset. In contrast to offline inference, the motion prediction
module of a real-world SDV is continuously queried with streaming inputs during online
inference. For example, in Figure 5.1c, the prediction module is queried again shortly
after Figure 5.1a. Although most contexts remain unchanged after this short period of
time, existing methods would start inference from scratch without reusing the encoded
features of static contexts. Moreover, prior works often predict a massive number of
redundant trajectories and ensemble the outputs of numerous models, such that the final
output can be adjusted in favor of prediction diversity during the post-processing, as
illustrated in Figure 5.1d. Although these techniques significantly boost the performance
on public benchmarks, they should be sparingly used on a real-world SDV where the
computational resources are scarce and the raw predictions, rather than the heuristically
aggregated ones, are preferred by the downstream planning module.

To address these problems, our first step is to represent everything as heterogeneous
polylines [158]. Then we adopt the pairwise-relative representation [163, 169] and separate

5.2 related work 93

the local attribute from the global pose of each polyline. The local attribute specifies what
the polyline actually is and it will be shared or reused if possible. The global pose specifies
where the polyline is and it will be used to derive the pairwise-relative pose before being
processed by the neural networks. Considering polylines as tokens, our second step is
to introduce the K-nearest Neighbor Attention with Relative Pose Encoding (Knarpe)
module, which allows Transformers [159] to aggregate the local contexts for each token
via the local attributes and relative poses. While Knarpe enables context sharing among
agents, we further propose the Heterogeneous Polyline Transformer with Relative pose
encoding (HPTR), which emphasizes the heterogeneous nature of polylines in motion
prediction tasks. Based on Knarpe, HPTR uses hierarchical Transformer encoders and
decoders to separate the intra-class and inter-class attention, such that tokens can be
updated asynchronously during online inference. More specifically, for static polylines,
such as HD maps, their features will be reused, whereas for dynamic polylines, such as
traffic lights and agents, their features will be updated on demand.

Our contributions are summarized as follows: (1) We introduce Knarpe, a novel attention
mechanism that enables the pairwise-relative representation to be used by Transformer-
based architectures. (2) Based on Knarpe we propose HPTR, a hierarchical framework
that minimizes the computational overhead via context sharing among agents and
asynchronous token update during online inference. (3) Compared to SOTA agent-centric
methods, we achieve similar performance while reducing the memory consumption
and the inference latency by 80%. By caching the static map features during online
inference, HPTR can generate predictions for 64 agents in real time at 40 frames per
second. Experiments on Waymo and Argoverse-2 datasets show that our approach
compares favorably against other end-to-end methods which do not apply expensive
post-processing and ensembling.

5.2 Related work

Motion prediction is a popular research topic because it is an essential component of
modular autonomous driving stacks [2]. The task of motion prediction has been formu-
lated in different ways. In this paper, we focus on the most popular one: the marginal
motion prediction [145, 146, 148, 149, 223] where the multi-modal future trajectories are
predicted individually for each target agent [137, 138, 139]. In contrast to the marginal
formulation, joint motion prediction [209, 224, 225, 226] requires the multi-modal futures
to be simultaneously generated for all target agents from the same scenario [227, 228,
229]. Beyond the open-loop motion prediction tasks, behavior simulation [18, 112, 114]
is formulated in a closed-loop fashion where the future agent trajectories are simulated
by rolling out a learned policy [100, 140]. Numerous works have also investigated the
possibility to combine motion prediction with other modules, such as perception and
planning [41, 110, 213, 230], or to learn an end-to-end driving policy [26, 35, 131] mapping
sensor measurements directly to the actions or motion plans of the SDV.

Vectorized representation proposed by VectorNet [158] is widely used in recent works
because of its promising performance [165, 166, 167]. Depending on how the coordinate
system is selected, the vectorized representation falls into three categories: agent-centric,
scene-centric and pairwise-relative. The most popular one is the agent-centric representa-

94 5 hptr

tion [164, 165, 166, 167] that transforms all inputs to the local coordinates of each target
agent. Despite its good performance, this approach suffers from poor scalability as the
number of target agents grows. To reduce the computational overhead, scene-centric rep-
resentation [162] shares the contexts among all target agents by transforming all inputs to
a global coordinate system, which is not tied to any specific agent but to the whole scene.
However, its performance is poor due to the lack of rotation and translation invariance.
In this paper we use the pairwise-relative representation, which is less often discussed
in prior works because it has not demonstrated any clear advantage. To the best of our
knowledge, there are three works using the pairwise-relative representation: HDGT [169],
GoRela [163] and HiVT [168]. HDGT and GoRela are based on Graph Neural Networks
(GNNs), and their implementation requires message passing and GNN libraries. How-
ever, these libraries are often less efficiently implemented on Graphics Processing Units
(GPUs) when compared to the basic matrix operations that Transformers rely on. HiVT
augments the agent-centric encoders with a pairwise-relative interaction decoder in order
to realize multi-agent prediction. In contrast to HiVT which uses agent-centric vectors
and the standard Transformer, we formulate all inputs as pairwise-relative polylines and
introduce the Knarpe attention mechanism. As a result, our HPTR demonstrates clear
advantages in terms of accuracy and efficiency. Replacing the vanilla attention with our
Knarpe, we can borrow ideas from other Transformer-based methods and adapt them
to the pairwise-relative representation. For example, the hierarchical architecture of our
HPTR is inspired by Wayformer [164]. More sophisticated architectures and techniques,
such as goal-based decoding [141, 142], can also be incorporated into our framework to
further boost the performance.

Rasterized representation was widely used in early works on motion prediction [147,
153, 154, 155]. These methods use convolutional neural networks (CNNs) to process
the rasterized image of agent-centric ROI. To improve the inference efficiency, some
works [146, 231, 232, 233] pre-compute the static map features and use rotated ROI
alignment [234] to retrieve the local contexts around the target agent. In this paper, our
Knarpe realizes this operation for pure Transformer-based architectures.

Transformers with attention mechanism [159] have achieved great success in natural
language processing [160, 235] and computer vision tasks [161, 236, 237]. Inspired
by the vision Transformers, we treat polylines as high-dimensional pixels; the local
attribute corresponds to color channels, whereas the global pose corresponds to the
pixel-wise location. We further extend the relative position encoding [238, 239] to higher
dimensions and rename it to relative pose encoding (RPE) in this paper. Although
the benefit of RPE is still controversial for other tasks [240, 241], its value for motion
prediction is demonstrated in this paper. Instead of using RPE, previous motion prediction
Transformers use everything as input, which is equivalent to concatenating the pixel-wise
location to the RGB channels. This is a very uncommon practice from the perspective of
vision Transformers.

5.3 Method

In Sec. 5.3.1 we introduce the pairwise-relative polyline representation which enjoys
the advantages of both the agent-centric and the scene-centric representation. Then in

5.3 method 95

MP
TL
AG

(a) Polylines.

Global Pose

Local Attribute
starts at

Normalize
w.r.t.

Polyline Where is it? What is it?

(b) Local attribute represented in the global pose’s frame.

Relative
Pose (,)

(,) (,)

(,)

(c) Obtain relative poses.

Figure 5.2: Pairwise-relative polyline representation. MP: Map. TL: Traffic lights. AG: Agents.

Sec. 5.3.2 we present the K-nearest Neighbor Attention with Relative Pose Encoding
(Knarpe) which enables the pairwise-relative polyline representation to be used by
Transformers. Based on Knarpe, we propose the Heterogeneous Polyline Transformer
with Relative pose encoding (HPTR) in Sec. 5.3.3. HPTR uses a hierarchical architecture to
prevent redundant computations and to realize the asynchronous update of heterogeneous
tokens. Finally in Sec. 5.3.4 we discuss our output representation and training strategies.

5.3.1 Pairwise-Relative Polyline Representation

Based on prior works [163, 169], we formulate the pairwise-relative polyline representation
as the third type of input representation for motion prediction. As shown in Figure 5.2a,
all data relevant to motion prediction can be represented as an ordered list of consecutive
vectors, i.e. polylines. By transforming the polyline to the coordinate frame of its global
pose as done in Figure 5.2b, a polyline is fully described by a pair of global pose and
local attribute. The global pose specifies the location and heading of the polyline in the
global coordinate system, whereas the local attribute describes the polyline in its local
coordinates, for example it is a yellow solid lane, 8 meters long, slightly curved to the
right. In practice, it does not matter where the lane is on the earth; we only care about
where the lane is relative to us. Hence, we obtain the relative poses from the global poses
as shown in Figure 5.2c, before feeding them to the prediction network. Specifically, the
global pose and local attribute of polyline i are denoted as (pi , ui). The global pose pi
has 3 degrees of freedom (x, y, θ), i.e. the 2D position and the heading yaw angle. The
local attribute ui is derived from ci , the intrinsic characteristics of the polyline, and li , the
polyline vectors represented in the local coordinate.

The task of marginal motion prediction is to predict the future 2D positions individually
for each target agent based on the static HD map (MP), the history trajectories of all
agents (AG) and the traffic lights (TL). For each scenario to be predicted, we consider
a maximum number of NMP map polylines, NTL traffic lights and NAG agents. We
define t = 0 to be the current step, {Th − 1, . . . , 0} to be the observed history steps and
{1, . . . , Tf} to be the predicted future steps. The static HD map are spatial polylines
(pMP

i , lMP
i , cMP

i), i ∈ {1, . . . , NMP} where pMP
i ∈ R3 is its starting vector, lMP

i ∈ RNnode×4

are the 2D positions and directions of the Nnode segments normalized against pMP
i , and

cMP
i ∈ RCMP is the one-hot encoding of CMP different lane types. Polygonal elements, such

as crosswalks, are converted to a group of parallel polylines across the polygon. Similar

96 5 hptr

to the map, history trajectories of agents are represented as spatial-temporal polylines
(pAG

i , lAG
i , cAG

i), i ∈ {1, . . . , NAG} where pAG
i ∈ R3 is the last observed agent pose,

lAG
i ∈ RTh×(6+3) contains the history 2D positions, directions and velocities normalized

against pAG
i as well as the 1D speed, yaw rate and acceleration which do not need to be

normalized, and cAG
i ∈ R6 is the 3D agent size and the one-hot encoding of 3 agent types

(vehicle, pedestrian and cyclist). Following VectorNet [158], we use PointNet [242] with
masked max-pooling to aggregate (lMP

i , cMP
i) into uMP

i ∈ RD and (lAG
i , cAG

i) into uAG
i ∈

RD , where D is the hidden dimension. Since current datasets contain only the detection
results rather than the tracking results of traffic lights, we consider only the traffic lights
observed at t = 0 and represent them as singular polylines (pTL

i , cTL
i), i ∈ {1, . . . , NTL}

where pTL
i ∈ R3 is the pose of the stop point and cTL

i ∈ RCTL is the one-hot encoding of
CTL different states of traffic lights. We use a multi-layer perceptron (MLP) to encode cTL

i
into uTL

i ∈ RD .

Because the local attributes are normalized and the global poses are used to compute the
relative poses before being consumed by the network, the pairwise-relative representation
preserves the viewpoint invariance of the agent-centric representation. Additionally, since
the local attributes have higher dimensions compared to the 3-dimensional global poses,
sharing the local attributes enables the pairwise-relative representation to maintain the
good scalability of the scene-centric representation. However, so far this representation
has only be exploited by GNNs, which are not comparable to Transformers in terms of
accuracy and efficiency on the motion prediction benchmarks [137, 138].

5.3.2 KNARPE: K-Nearest Neighbors Attention with Relative Pose Encoding

After encoding the local attributes via the polyline-level encoders, the scenario is now
described as (pi , ui), i ∈ {1, . . . , N} where N = NMP + NAG + NTL is the total number
of polylines. However, this representation cannot be handled by standard self-attention
because on the one hand modeling the all-to-all attention is prohibitively expensive [164]
due to the large N, and on the other hand the performance deteriorates when the
input is scene-centric [162]. To address both problems, we introduce the K-nearest
Neighbors Attention with Relative Pose Encoding (Knarpe). Similar to MTR [165],
Knarpe limits the attention to the K-nearest neighbors of each token. Specifically,
κK

i (di1, . . . , diN) ⊆ {1, . . . , N} is a set that contains the indices of K tokens closest to token
i. For simplicity, we use the L2 distance to measure the distance dij between the global
poses of token i and j. Instead of directly processing global poses, Knarpe uses the
relative pose encoding (RPE), i.e. the positional encoding for pairwise-relative poses.
Denoting rij = (xij, yij, θij) to be the global pose of token j represented in the coordinate
of token i, i.e. pj transformed to the coordinate of pi , the RPE of rij is computed using
sinusoidal positional encoding (PE) and angular encoding (AE) [112],

RPE(rij) = concat(PE(xij), PE(yij), AE(θij)),

PE2i(x) = sin(x ·ω 2i
D), PE2i+1(x) = cos(x ·ω 2i

D),

AE2i(θ) = sin (θ · (i + 1)) , AE2i+1(θ) = cos (θ · (i + 1)) , i ∈ {0, . . . , D/2− 1},

5.3 method 97

where ω is the base frequency. Following [239], the RPE is projected and added to the
keys and values to obtain zi , the output of letting token i attend to its K neighbors κK

i ,

zi = Knarpe

(
ui , uj, rij | j ∈ κK

i

)
= ∑

j∈κK
i

αij

(
ujWv + bv+RPE(rij)Ŵv + b̂v

)
,

αij =
exp(eij)

∑k∈κK
i

exp(eik)
, eij =

(uiWq + bq)(ujWk + bk+RPE(rij)Ŵk + b̂k)
√

D
,

where αij are the attention weights, eij are the logits, W{q,k,v}, b{q,k,v} are the learnable
projection matrices and biases for query, key and value, and Ŵ{k,v}, b̂{k,v} are the learnable
projection matrices and biases for RPE. We do not apply RPE to query because doing this
does not boost the performance in our experiments.

Efficient implementation of Knarpe can be achieved using basic matrix operations such
as matrix indexing, summation and element-wise multiplication. See the appendix for
more details. Knarpe allows the pairwise-relative representation to be used by pure
Transformer-based architectures. Self-attention with Knarpe aggregates the local context
for each token in the same way as CNN aggregates the context around each pixel via
convolutional kernels. The pixel corresponds to the token, whereas the kernel size of a
CNN corresponds to the number of neighbors of Knarpe. Cross-attention with Knarpe

enables rotated ROI alignment of pre-computed features, e.g. the static map features.
Previously, this was only possible for CNN-based [146, 232] and GNN-based [163, 169]
methods.

5.3.3 HPTR: Heterogeneous Polyline Transformer with Relative Pose Encoding

By replacing the standard multi-head attention [159] with our Knarpe, we construct Trans-
former encoders and decoders which can model the interactions between heterogeneous
polylines via relative poses and local attributes. To address the marginal motion predic-
tion task involving HD map, traffic lights and agents, we propose the Heterogeneous
Polyline Transformer with Relative pose encoding (HPTR) as shown in Figure 5.3. Since
the temporal dimension is eliminated by the polyline-level encoder [158], HPTR models
only the spatial relationship between tokens from different classes.

Firstly in Figure 5.3a, the intra-class Transformer encoders build a block diagonal attention
matrix that models the interactions within each class of tokens. Then in Figure 5.3b,
the inter-class Transformer decoders enhance the traffic lights tokens by making them
attend to the map tokens, whereas the agent tokens are enhanced by attending to both
the traffic lights and map tokens. The intuition behind this is the hierarchical nature
of traffic; first there is only the map, then the traffic lights are added and finally the
agents join. Intuitively, the map influences the interpretation of traffic lights but not
vice versa, whereas map and traffic lights together influence the behavior of agents but
not vice versa. After the inter-class Transformer decoders, the all-to-all Transformer
encoder in Figure 5.3c builds a full attention matrix allowing tokens to attend to each
other irrespective of their class. Finally, each agent token is concatenated with NAC
learnable anchors, which are shared among each type of agent. Since the task is marginal
motion prediction, we batch over agents and anchors, i.e. now the number of anchor

98 5 hptr

Intra
MP

Intra
TL

Intra
AG

MP AGTL

M
P

AG
TL

(a) Intra-class TF encoder

Enhance-TL

Enhance-AG

MP AGTL

M
P

AG
TL

(b) Inter-class TF decoder

All-to-All
Self-Attention

MP AGTL

M
P

AG
TL

(c) All-to-all TF encoder

AG Anchors
1 2 3

4 5 6

MP TL
AG

Self-Attn Cross-Attn
All Tokens

(d) AC-to-all TF decoder

Figure 5.3: The hierarchical architecture of HPTR. Transformers are applied in sequential order
from left to right, top to down. Some attentions are redundant and can be skipped for better
efficiency. We propose the lower triangular attention matrix, which excludes the intra-TL, intra-AG
and all-to-all self-attentions (the transparent parts). By removing the redundant attentions, this
specific lower triangular architecture enables asynchronous token update during online inference.
TF: Transformer. Attn: Attention. MP: Map. TL: Traffic lights. AG: Agents.

tokens is NAG · NAC. Then the anchor-to-all Transformer decoder in Figure 5.3d lets
each of these anchor tokens attend to all tokens so as to aggregate more contextual
information. The final output is denoted as ẑAG

i , i ∈ {1, . . . , NAG · NAC}, and it is used to
generate the multi-modal future trajectories. We set the number of neighbors to K for the
intra-class and all-to-all Transformers. This number K is multiplied by γTL, γAG and γAC
respectively for the enhance-TL, enhance-AG and AC-to-all Transformers, such that these
Transformers can have a larger receptive field.

HPTR organizes the Transformers in a hierarchical way such that some of the intermediate
results can be cached and reused during the online inference; for example the outputs of
the intra-MP Transformer, i.e. the static map features. This allows tokens from different
classes to be updated asynchronously, which significantly reduces the online inference
latency. We can further improve the efficiency without sacrificing the performance by
trimming the redundant attentions. The attention matrices shown in Figure 5.3a, 5.3b
and 5.3c are overlapping, which means some relationships are repeatedly modeled, such
as the agent-to-agent self-attention. We propose to remove the intra-TL, intra-AG and all-
to-all Transformer, while keeping the intra-MP, enhance-TL and enhance-AG Transformer.
These three Transformers together build a lower triangular attention matrix which is
necessary and sufficient to model the relationship between map, traffic lights and agents.
Our approach can be seen as an extension to Wayformer [164] which does not introduce
the inter-class Transformer decoders. We can trim Figure 5.3 differently and cast HPTR
into the Wayformer. Specifically, Wayformer with late fusion corresponds to HPTR with
diagonal attention matrix (only intra-class TF), Wayformer with early fusion corresponds
to HPTR with full attention matrix (only all-to-all TF) and Wayformer with hierarchical
fusion corresponds to HPTR with the diagonal followed by the full attention matrix.

5.3.4 Output Representation and Training Strategies

We follow the common practice [164, 165, 166] to represent the outputs as a mixture
of Gaussians and train with hard assignment. The multi-modal future trajectories for
each agent are generated by decoding ẑAG

i , i ∈ {1, . . . , NAG · NAC} via two MLPs; the

5.4 experiments 99

confidence head and the trajectory head. The confidence head predicts a scalar confidence
of each trajectory. Besides the Gaussian parameters of 2D positions (µx , µy, σx , σy, ρ) at
each future time step, our trajectory head predicts also the yaw angles, speeds and 2D
velocities. We use the cross entropy loss for confidences, negative log-likelihood loss
for 2D positions, negative cosine loss for yaw angles and Huber loss for speeds and 2D
velocities. The final training loss is the unweighted sum of all losses. Following the
hard-assignment strategy, for each agent we optimize only the predicted trajectory that is
closest to the ground truth in terms of 2D average displacement error. Please refer to the
appendix for more details.

5.4 Experiments

5.4.1 Experimental Setup

Benchmarks. We benchmark our method on the two most popular datasets: the Waymo
Open Motion Dataset (WOMD) [134] and the Argoverse-2 motion forecasting dataset
(AV2) [135]. Both datasets have an online leaderboard for marginal motion prediction.
However, their task descriptions are slightly different. For each scenario, WOMD evaluates
the predictions of up to 8 agents, whereas AV2 evaluates only one agent. Both datasets
require exactly 6 futures to be predicted for each target agent. The sampling time is 0.1
seconds for both datasets. The history length is 11 steps for WOMD and 50 steps for
AV2, whereas the future length is 80 steps for WOMD and 60 steps for AV2. We use
the official evaluation tool of the leaderboards to compute the metrics. For the WOMD
leaderboard [137], the ranking metric is soft mAP; for the AV2 leaderboard [138], it is
brier-minFDE. Please refer to the leaderboard homepages for more details about the
dataset and evaluation metrics.

Implementation details. We use Transformer with pre-layer normalization [215] for
HPTR. For each episode, we consider NMP = 1024 map polylines, NTL = 40 traffic light
stop points and NAG = 64 agents. Each polyline contains up to Nnode = 20 one-meter-
long segments. The base number of neighbors considered by Knarpe is K = 36. This
number is multiplied by γTL = 2, γAG = 4 and γAC = 10 respectively for the enhance-TL,
enhance-AG and AC-to-all Transformer. We set NAC = 6 to predict exactly 6 futures as
specified by the leaderboard. We do not apply ensembling or expensive post-processing
such as trajectory aggregation. Our post-processing manipulates only the confidences.
To improve the soft mAP, we use the non-maximum suppression of MPA [243] for the
WOMD leaderboard. To improve the brier-minFDE, we set the softmax temperature to
0.5 for the AV2 leaderboard. More details are provided in the appendix.

Training details. Thanks to the viewpoint invariance of the pairwise-relative represen-
tation, no data augmentation or input permutation is needed for the training of HPTR.
We use AdamW optimizer with an initial learning rate of 1e-4 and decaying by 0.5 every
25 epochs. We train with a total batch size of 12 episodes on 4 RTX 2080Ti GPUs. For
WOMD, we randomly sample 25% from all training episodes at each epoch; for AV2 we
use 50%. Our final models are trained for 120 epochs for WOMD and 150 epochs for
AV2. The complete training takes 10 days. For WOMD, the SDV agents, agents of interest

100 5 hptr

WOMD test repr.
soft

mAP ↑
mAP

↑
min

ADE ↓
min

FDE ↓
miss

rate ↓
*†MTR-Adv-ens [165] AC 0.4594 0.4492 0.5640 1.1344 0.1160
*†Wayformer [164] AC 0.4335 0.4190 0.5454 1.1280 0.1228
*MTR [165] AC 0.4216 0.4129 0.6050 1.2207 0.1351
*†MultiPath++ [166] AC N/A 0.4092 0.5557 1.1577 0.1340

HPTR (Ours) PR 0.3968 0.3904 0.5565 1.1393 0.1434

MPA [243] (MultiPath++) AC 0.3930 0.3866 0.5913 1.2507 0.1603

HDGT [169] PR 0.3709 0.3577 0.7676 1.1077 0.1325

Gnet [244] AC 0.3396 0.3259 0.6207 1.2391 0.1718

SceneTransformer [162] SC N/A 0.2788 0.6117 1.2116 0.1564

WOMD valid repr.
soft

mAP ↑
mAP

↑
min

ADE ↓
min

FDE ↓
miss

rate ↓

HPTR (Ours) PR 0.4222 0.4150 0.5378 1.0923 0.1326

MTR-e2e AC N/A 0.3245 0.5160 1.0404 0.1234

AV2 test repr.
brier-

minFDE6 ↓
minFDE6

↓
minFDE1

↓
minADE6

↓
miss

rate6 ↓
*ProphNet [167] AC 1.88 1.33 4.74 0.68 0.18
†Gnet [244] AC 1.90 1.34 4.40 0.69 0.18
†TENET [245] AC 1.90 1.38 4.69 0.70 0.19
*MTR [165] AC 1.98 1.44 4.39 0.73 0.15

GoRela [163] PR 2.01 1.48 4.62 0.76 0.22

HPTR (Ours) PR 2.03 1.43 4.61 0.73 0.19

THOMAS [224] AC 2.16 1.51 4.71 0.88 0.20

HDGT [169] PR 2.24 1.60 5.37 0.84 0.21

Table 5.1: Results on the marginal motion prediction leaderboards of WOMD and AV2. Both
tables are sorted according to the ranking metric such that the best performing method is on the
top. The ranking metric is soft mAP for WOMD, and brier-minFDE6 for AV2. † denotes ensemble. *
denotes predicting more futures than required. SC: scene-centric. AC: agent-centric. PR: pairwise-
relative.

5.4 experiments 101

and agents to be predicted are used for optimization. For AV2, the SDV agents, scored
agents and focal agents are used for optimization. To address the imbalance between
agent types, for WOMD we additionally optimize for pedestrians and cyclists which are
tracked for at least 4 seconds.

5.4.2 Benchmark Results

In Table 5.1 we benchmark our approach on the public leaderboards of WOMD and
AV2. From the leaderboard we observe that using ensemble and predicting redundant
trajectories can increase the prediction diversity and hence improve the soft mAP, brier-
minFDE and miss rate. For example, MTR-Adv-ens aggregates the outputs of 7 ablation
models, each predicting 64 futures. Besides the exaggerated large number of redundant
predictions, it is also non-trivial to aggregate them into 6 predictions. Some works use K-
means clustering while the others use non-maximum suppression; both involve heuristic
parameter fine-tuning. Since our framework is dedicated to real-world autonomous
driving, applying these computationally expensive techniques is contradictory to our
motivation. For a fair comparison, we focus on end-to-end methods which do not apply
these techniques. On the WOMD dataset, we achieve SOTA performance among the
end-to-end methods, including MTR-e2e, the end-to-end version of MTR, and MPA, the
end-to-end version of MultiPath++. Specifically, HPTR outperforms the pairwise-relative
HDGT and the scene-centric SceneTransformer by a large margin in all metrics. We also
show competitive performance on the AV2 leaderboard. We achieve better performance
in all metrics except the brier-minFDE compared to GoRela, which uses GNNs to tackle
the pairwise-relative representation. Since there exists a performance gap while adapting
from one dataset to another and we choose WOMD to be our main benchmark, our
performance on the AV2 leaderboard could be further improved by fine-tuning the
hyper-parameters for the AV2 dataset.

5.4.3 Ablation Study

In Table 5.2 we ablate different input representations and hierarchical architectures. The
scene-centric baseline, HPTR SC, uses the architecture of our HPTR and the input rep-
resentation of SceneTransformer [162]. The agent-centric baseline, WF baseline, is our
reimplementation of the Wayformer [164] with multi-axis attention and early fusion. Both
baselines achieve their expected performances compared to their original implementa-
tions. The large performance gap between HPTR SC and other models confirms the
disadvantage of scene-centric representation. The agent-centric baseline requires more
training iterations. After convergence, its performance is on par with our HPTR. To ablate
the hierarchical architecture, we implement three variations of HPTR; each corresponds
to a fusion strategy investigated by Wayformer. The full attention corresponds to the
early fusion, diagonal corresponds to late fusion, and HPTR with diagonal followed by
full attention corresponds to Wayformer with hierarchical fusion. While the early fusion
performs the best for Wayformer, for HPTR the lower triangular attention we proposed
outperforms both the early and the late fusion by a significant margin. The performance

102 5 hptr

WOMD valid
input

repr.

intra

MP

intra

TL/AG

enhance

TL/AG

all

2all
minFDE ↓ soft mAP ↑

HPTR (Ours) PR ✓ × ✓ × 1.145± 0.016 0.399± 0.010

WF baseline (100-epoch) AC × × × ✓ 1.161± 0.006 0.397± 0.007

HPTR diag+full (WF hier) PR ✓ ✓ × ✓ 1.156± 0.014 0.391± 0.002

HPTR diag (WF late) PR ✓ ✓ × × 1.169± 0.013 0.387± 0.012

HPTR full (WF early) PR × × × ✓ 1.158± 0.093 0.386± 0.041

WF baseline AC × × × ✓ 1.212± 0.019 0.378± 0.014

HPTR SC SC ✓ × ✓ × 1.687± 0.046 0.246± 0.005

Table 5.2: Ablation on the valid split of WOMD. The table is sorted according to the soft mAP such
that the best-performing method is on the top. Performances are reported as the mean plus-minus
3 standard deviations over 3 training seeds. Models are trained for 60 epochs if not otherwise
mentioned. WF: Wayformer. SC: scene-centric, AC: agent-centric, PR: pairwise-relative.

of hierarchical fusion is slightly worse than ours, but its inference latency is significantly
longer because of the redundancy in its attention matrices.

5.4.4 Efficiency Analysis and Qualitative Results

In Figure 5.4 we compare the computational efficiency of the ablation models presented
in Table 5.2. As discussed in prior works [164, 165], one of the major drawbacks of
agent-centric approaches is the poor scalability, which is reflected by the large slope of the
memory and latency curves of our WF baseline. On the RTX 2080Ti, it can handle only
up to 48 agents while the inference latency is 140ms. On the contrary, the scene-centric
baseline is extremely efficient, but it suffers from poor accuracy. Our HPTR takes the
best of both approaches. In terms of efficiency, our HPTR is comparable to the scene-
centric approaches, while our performance is on par with the agent-centric approaches.
Compared to the scene-centric baseline, the GPU memory consumption and the inference
latency of HPTR are slightly higher because for each new agent, we have to compute its
relative pose to all existing tokens. Compared to the hierarchical architectures introduced
by Wayformer, HPTR with our lower triangular attention achieves the best trade-off
between accuracy and latency. By reusing the static map features during the online
inference, our HPTR predicts the multi-modal futures for 64 agents in 37ms without
the use of inference libraries. Narrowing the receptive field, for example by reducing
λAC from 10 to 8, can improve the inference speed but the accuracy might be affected
in some cases. Using half precision at inference time can reduce the latency to 25ms (40
fps) without affecting the accuracy. Compared to the most efficient agent-centric method
Wayformer, we reduce the memory consumption and the online inference latency by 80%
without sacrificing the accuracy.

5.4 experiments 103

1 8 16 32 48 64
Number of Predicted Agents

0

2

4

6

8

10

GP
U

M
em

or
y

(G
B)

1 8 16 32 48 64
Number of Predicted Agents

0
20
40
60
80

100
120
140

Of
fli

ne
 In

fe
re

nc
e

(m
s/

it)

1 8 16 32 48 64
Number of Predicted Agents

0

10

20

30

40

50

On
lin

e
In

fe
re

nc
e

(m
s/

it)

WF baseline
OOM Error

HPTR SC
HPTR

HPTR full
HPTR diag

HPTR diag+full
HPTR half prec.

HPTR AC = 8

Figure 5.4: HPTR efficiency analysis. HPTR is as efficient as scene-centric methods in terms of
GPU memory consumption and inference latency, while being as accurate as agent-centric methods.
We use standard Ubuntu, Python and Pytorch without optimizing for real-time deployment. We
predict one scenario at each inference time on one 2080Ti, i.e. we batch over scenarios and the
batch size is 1. The number of context agents is the same as the number of predicted agents for
all experiments. During offline inference, every inference starts from scratch, while during online
inference, we cache and reuse the static map features. Specifically, we repeat the inference of
the same scenario for 100 times to simulate online inference, where the static map features are
computed at the first step and reused for the next 99 steps.

1 8 16 32 48 64
Number of Predicted Agents

0

2

4

6

8

10

GP
U

M
em

or
y

(G
B)

1 8 16 32 48 64
Number of Predicted Agents

0

100

200

300

Of
fli

ne
 In

fe
re

nc
e

(m
s/

it)

1 8 16 32 64 128
Validation Batch Size

1000

1500

2000

2500

3000

Va
lid

at
io

n
Ti

m
e

(s
)

WF baseline
OOM Error

HPTR SC
HPTR

HDGT on our 2080Ti
HDGT original paper

Figure 5.5: Efficiency comparison with HDGT. We run their official repository on our machine
with a single 2080Ti. The left plot shows that HDGT achieves good scalability in terms of GPU
memory consumption as expected. The middle plot shows that the offline inference latency (with
batch size 1) of HDGT scales well, but it is significantly larger than that of other Transformer-based
methods. The right plot shows the inference times for the complete WOMD validation split (64
agents per episode) with different validation batch sizes. It confirms the inference speed reported
in the original HDGT paper is correctly reproduced on our setup. Our setup is faster because it
has a more powerful CPU.

104 5 hptr

(a) Vehicle (b) Pedestrian (c) Cyclist

Figure 5.6: Qualitative results of HPTR. For each type of agent we show a successful case (top)
and a failure case (bottom). The intersections are cluttered because we visualize traffic lights by
overlaying the lanes they control with their color. The ground truth is in orange. The target agent
and the predictions are in cyan. The most confident prediction has the least transparent color, the
thickest line and the biggest cross. Please refer to the appendix for a detailed explanation of the
visualization.

In Figure 5.5 we compare the computational efficiency of our method with the GNN-
based pairwise-relative methods. Currently there are two such methods, GoRela [163]
and HDGT [169]. While HDGT does not match the prediction accuracy of GoRela or our
method, it is worth noting that GoRela is not open-sourced, whereas HDGT is. Therefore,
we use HDGT in this efficiency comparison. The left plot of Figure 5.5 confirms the
good scalability of HDGT in terms of GPU memory. This is expected because it uses
the pairwise-relative representation. In the middle plot, we can observe that HDGT is
slower than both our HPTR and our agent-centric Wayformer baseline in terms of offline
inference speed. To confirm that HDGT runs correctly on our setup, in the right plot we
reproduce the inference time of HDGT on the complete WOMD validation split with
different validation batch size and we compare the reproduce numbers with the reported
number in the HDGT paper. The slow inference speed of GNN-based methods such
as HDGT is mainly because GNN libraries cannot utilize the GPU as efficiently as the
basic matrix operations do. Our KNARPE is implemented with the most basic matrix
operations, hence it is better suited for real-time and on-board applications.

Figure 5.6 illustrates the qualitative results of our HPTR. For each type of agent, we select
a successful case where the most confident prediction matches the ground truth, and a
failure case to show the limitation of our method. In the successful cases, we observe
the vehicle stops at the red light, the pedestrian walks along the road edge with another
person, and the cyclist rides across the road via the crosswalk. Although in the failure
cases the most confident prediction deviates from the ground truth, we are encouraged
to see that our predictions are still reasonable. The failure cases can be addressed by
improving the prediction diversity via goal-conditioning, which is orthogonal to our
contributions.

5.5 conclusion 105

5.5 Conclusion

In this paper we introduce a novel attention module, Knarpe, that allows the pairwise-
relative representation to be used by Transformers. Based on Knarpe, we present a
pure Transformer-based framework called HPTR, which uses hierarchical architecture
to enable asynchronous token update and avoid redundant computations. While agent-
centric methods suffer from poor scalability and scene-centric methods suffer from poor
accuracy, our HPTR gets the best from both worlds. Experiments on the two most popular
benchmarks show that our approach achieves superior performance, while satisfying the
real-time and on-board requirements of real-world autonomous driving.

Limitations. The poses in this work reside on a 2D plane, which can be extended to
the 3D space in the future. For simplicity, we use L2 distance to obtain the K-nearest
neighbors. Future works can explore more sophisticated distances which involve map
topology. Currently we use the most basic anchor-based decoder which has limited
diversity. This can be improved by using more advanced decoding techniques, such as
goal-conditioning. In this paper we focus on marginal motion prediction. It would be
interesting to investigate the potential of our approach in other prediction tasks.

106 5 hptr

Appendices

5.A Output Representation and Training Strategies

For each anchor token ẑAG
i , i ∈ {1, . . . , NAG ·NAC}, the confidence head predicts the logits

pk, k ∈ {1, . . . , 6}, whereas the trajectory head predicts 6 trajectories, each of which is
represented as (µt

x , µt
y, log σt

x , log σt
y, ρt, vt

x , vt
y, θt, st), t ∈ {1, . . . , Tf }, i.e. the mean of the

Gaussian in x, y, the log standard deviation of the Gaussian in x, y, the correlation of the
Gaussians, the velocity in x, y, the heading angle and the speed. We denote the ground
truth as (x̂, ŷ, v̂x , v̂y, θ̂, ŝ). The negative log-likelihood loss for position is formulated as

Lpos = − logN (x̂, ŷ | µx , µy, σx , σy, ρ).

The negative cosine loss for the heading angle is formulated as

Lrot = − cos(θ̂ − θ).

The Huber loss for velocities and speed is formulated as

Lvel = Lδ(v̂x − vx) + Lδ(v̂y − vy) + Lδ(ŝ− s),

where Lδ is the Huber loss. We use δ = 1 for all Huber losses. The final regression loss
for a trajectory is the unweighted sum

Ltraj = Lpos + Lrot + Lvel,

which is averaged over the future time steps where the ground truth is available. We
use a hard assignment strategy, i.e. among the 6 predictions of each agent we select
the one that is closest to the ground truth in terms of average displacement error and
optimize only for that prediction. Denoting the index of this prediction as k̂, we train the
confidence head via the cross entropy loss by taking k̂ as the ground truth:

Lconf = − log
exp(pk̂)

∑6
i=1 exp(pi)

.

The final training loss for the complete model is the unweighted sum

L = Ltraj + Lconf.

Our output representation and training strategies are the same as prior works [164, 165,
166], except for the auxiliary losses on velocities, speeds and heading angles.

5.B Implementation Details

5.B.1 Knarpe Implementation

Figure 5.7 shows how Knarpe is implemented with the most basic matrix operations, i.e.
matrix indexing, summation and element-wise multiplication.

5.b implementation details 107

K nearest
neighbor

Tile

Elementwise
Multiplication

Sum Over

Sum Over

Elementwise
Multiplication

Tile

Relative pose:
 between

and K nearest

Sinusoidal
Positional Embedding

Figure 5.7: KNARPE implementation. In contrast to most GNNs, Knarpe is implemented with
the most basic matrix operations. The tensor size is shown in the brackets, where B is the batch
size, M is the source (src = q) sequence length, N is the target (tgt = k = v) sequence length, K in
the number of neighbors, D is the hidden dimension.

5.B.2 Network Architectures

We use ReLU activation and set the hidden dimension D to 256. Our Knarpe is im-
plemented with multi-head attention with 4 heads. We use Transformer with pre-layer
normalization [215] with a dropout rate of 0.1. The feed-forward hidden dimension of
Transformers is set to 1024. The base frequency ω of the sinusoidal positional encoding is
set to 1000. We train a single model for all types of agents, while each type of agent has
its own anchors. The polyline-line level PointNet and MLPs have 3 layers, the intra-MP
Transformer encoder has 6 layers, and the inter-class as well as the AC-to-all Transformer
decoders, have 2 layers. Our HPTR has 15.2M trainable parameters in total. The same
setup is used for both the WOMD dataset and the AV2 dataset.

In the following, we report the configuration of ablation models. The HPTR with diagonal
attention has 6 layers of intra-MP, 3 layers of intra-TL and 3 layers of intra-AG Transformer.
It has 15.4M trainable parameters. The HPTR with full attention has 6 layers of all-to-
all and 6 layers of AC-to-all Transformer. It has 15.2M parameters. The HPTR with
diagonal followed by full attention has 6 layers of intra-MP, 2 layers of intra-TL, 2 layers
of intra-AG, 2 layers of all-to-all and 2 layers of AC-to-all Transformer. It has 15.4M
trainable parameters. Both the HPTR with full attention and the HPTR with diagonal
followed by full attention have to be trained on GPUs with 24GB of VRAM (RTX 3090 in
our case) because they require more GPU memory at training time. The scene-centric
baseline uses the scene-centric representation and the standard Transformer. Following
SceneTransformer [162], the input 2D positions and 2D directions are pre-processed using
sinusoidal positional encoding. The base frequency is set to 1000 for 2D positions and 10
for 2D directions. The output dimension of the positional encoding is 256. This model
has 13M trainable parameters. The agent-centric baseline closely follows Wayformer [164].
It has 6 layers of all-to-all Transformer and 8 layers of AC-to-all Transformer. The number
of latent queries is 192. The learning rate starts at 2e-4 and it is multiplied by 0.5 every 20

108 5 hptr

epochs. The training of the agent-centric baseline takes 100 epochs to converge. We do
not use auxiliary losses on velocities, speeds and yaw angles to train this model. This
model has 15.6M trainable parameters.

5.B.3 Pre-Processing and Post-Processing

Our pre-processing and post-processing closely follow MPA [243]. The post-processing
manipulates only the confidences via greedy non-maximum suppression. The distance
threshold is 2.5m for vehicles, 1m for pedestrians and 1.5m for cyclists. We use the
average displacement error to compute the distance between predicted trajectories. For
AV2 we simply use softmax with a temperature of 0.5 instead of doing non-maximum
suppression.

Training Details

Due to the large size of motion prediction datasets, each epoch would take a very long
time if trained on the complete training split. In order to track losses more frequently,
we randomly sample a fraction of all training data in each epoch. This is equivalent to
using the complete training dataset if the training runs for many epochs. We observe a
statistically significant correlation between the model performance and the initialization
of anchors. We recommend to use a large variance for the initialization distributions.
Specifically, we use Xavier initialization and multiply the initialized values by 5.

Our final models for the leaderboard submission are trained for 10 days and models
for ablation and development are trained for 5 days. This long training time is because
on the one hand WOMD is a very large-scale dataset, and on the other hand we only
use 4 RTX 2080Ti GPUs for the training. While comparing the wall time duration of
training, the computational resources should be taken into consideration. As a reference,
HDGT [169] uses 8 V100 and trains for 4-5 days, GoRela [163] uses 16 GPUs (model not
specified but most likely A100/V100), MTR [165] uses 8 RTX 8000, Wayformer [164] uses
16 TPU v3 cores and ProphNet [167] uses 16 V100. All of these methods use a much
higher number of more powerful GPUs than we use. Given comparable computational
resources, the training time of our method could be reduced to 1-2 days. In terms of
sample efficiency, our method is on par with other methods. As shown in Figure 5.8, our
HPTR converges after 15 epochs (5 days) and our final model is trained for 30 epochs (10
days) on WOMD. As a reference, HDGT is trained for 30 epochs, MTR is trained for 30
epochs and ProphNet is trained for 60 epochs on WOMD.

5.C Explanation of the Visualization

We use white line for lane centers of freeway, aluminium line for lane centers of surface
street, dark orange line for stop sign, chocolate line for lane centers of bike lane, dark
blue line for road edges boundary, dark plum line for road edges median, butter line for
all types of broken road lines, magenta line for all types of solid single road lines, scarlet

5.c explanation of the visualization 109

Figure 5.8: The validation mAP and minFDE logged during the training of our HPTR. The
training runs on 4 RTX 2080Ti GPUs. The gray curve is trained for 5 days and the green curve
continues the training for another 5 days. At each epoch, we sample 25% of the complete training
split so as to do validation and log metrics more frequently. As a consequence, the effective
epoch of these plots should be divided by 4, i.e. in the first 5 days we actually go through the
complete WOMD training split 15 times. As we can see, training models for 5 days is enough for
development. Only the models for the final leaderboard submission are trained for 10 days. The
training can be speeded up given more computational resources.

red line for all types of double road lines, chameleon line for speed bumps and entrances
to driveways, sky blue line for crosswalks.

The intersections are cluttered because we visualize traffic lights by overlaying the lanes
they control with their color: red line for stop light state, yellow line for caution light
state, green line for go light state, light aluminum line for unknown light state, violet line
for flashing light state.

The ground truth is in orange. The target agent and the predictions are in cyan. Confi-
dence are reflected by the transparency and thickness of the trajectory. The most confident
prediction has the least transparent color, the thickest line and the biggest cross.

110 5 hptr

model description
concat

RPE

query

RPE

train on

2080ti

mem%

on 3090

Min

FDE ↓
Soft

mAP ↑

ours × × ✓ 58.2 1.143± 0.039 0.401± 0.007

ours without q, k, v bias × × ✓ 58.2 1.140± 0.021 0.396± 0.009

add proj. RPE to proj. q, k, v × ✓ OOM 66.2 1.144± 0.036 0.397± 0.006

concat. RPE to k, v ✓ × OOM 71.6 1.138± 0.026 0.395± 0.006

concat. RPE to q, k, v ✓ ✓ OOM 90.5 1.133± 0.024 0.396± 0.006

Table 5.3: Ablation on WOMD valid split. We study different ways to incorporate the RPE into
the dot-product attention. Performance is reported as the mean plus-minus 3 standard deviations
over 3 training seeds. Models are trained for 60 epochs. OOM: out of memory. q: query. k: key. v:
value.

minFDE6

↓
minFDE1

↓
minADE6

↓
minADE1

↓
Miss Rate6

↓
Miss Rate1

↓
brier-

minFDE6 ↓

1.43 4.61 0.73 1.84 0.19 0.61 2.03

Table 5.4: Complete results of our HPTR on the AV2 test split.

5.D Additional Ablation Studies

In Table 5.3 we ablate different ways to incorporate RPE into the dot-product attention.
The differences are insignificant in terms of performance. However, our approach, i.e.
adding projected RPE to projected key and value, consumes less memory at training time.
We use this setup in our main paper because it can be trained on the RTX 2080 Ti GPUs
(12GB VRAM), which are more accessible than the RTX 3090 GPUs (24GB VRAM) in
practice.

5.E Additional Quantitative Results

In Tables 5.5, 5.6, and 5.4, we provide the complete results of our HPTR on the AV2 test
split, the WOMD test split, and the WOMD valid split, respectively.

5.e additional quantitative results 111

Object

Type

Measurement

Time (s)

Soft

mAP ↑
mAP

↑
Min

ADE ↓
Min

FDE ↓
Miss

Rate ↓
Overlap

Rate ↓

Vehicle 3 0.5631 0.5475 0.2795 0.4997 0.0927 0.0190

Vehicle 5 0.4687 0.4623 0.5714 1.1020 0.1297 0.0415

Vehicle 8 0.3697 0.3664 1.0739 2.2753 0.1787 0.0915

Vehicle Avg 0.4671 0.4587 0.6416 1.2923 0.1337 0.0507

Pedestrian 3 0.4534 0.4427 0.1637 0.3111 0.0676 0.2408

Pedestrian 5 0.3422 0.3370 0.3220 0.6616 0.0938 0.2648

Pedestrian 8 0.2792 0.2751 0.5722 1.2778 0.1248 0.2952

Pedestrian Avg 0.3582 0.3516 0.3526 0.7502 0.0954 0.2669

Cyclist 3 0.4334 0.4267 0.3266 0.6078 0.1859 0.0494

Cyclist 5 0.3587 0.3552 0.6166 1.2085 0.1922 0.0900

Cyclist 8 0.3025 0.3006 1.0825 2.3096 0.2250 0.1369

Cyclist Avg 0.3649 0.3608 0.6752 1.3753 0.2011 0.0921

Avg 3 0.4833 0.4723 0.2566 0.4729 0.1154 0.1030

Avg 5 0.3899 0.3848 0.5033 0.9907 0.1386 0.1321

Avg 8 0.3171 0.3140 0.9095 1.9543 0.1762 0.1745

Avg Avg 0.3968 0.3904 0.5565 1.1393 0.1434 0.1366

Table 5.5: Complete results of our HPTR on the WOMD test split.

112 5 hptr

Object

Type

Measurement

Time (s)

Soft

mAP ↑
mAP

↑
Min

ADE ↓
Min

FDE ↓
Miss

Rate ↓
Overlap

Rate ↓

Vehicle 3 0.5611 0.5451 0.2796 0.4988 0.0934 0.0186

Vehicle 5 0.4704 0.4637 0.5698 1.0986 0.1297 0.0405

Vehicle 8 0.3678 0.3644 1.0731 2.2909 0.1824 0.0909

Vehicle Avg 0.4664 0.4577 0.6408 1.2961 0.1352 0.0500

Pedestrian 3 0.4923 0.4802 0.1454 0.2674 0.0478 0.2358

Pedestrian 5 0.4055 0.3993 0.2782 0.5488 0.0661 0.2605

Pedestrian 8 0.3639 0.3577 0.4834 1.0157 0.0813 0.2901

Pedestrian Avg 0.4206 0.4124 0.3023 0.6106 0.0651 0.2621

Cyclist 3 0.4606 0.4519 0.3309 0.6021 0.1779 0.0523

Cyclist 5 0.3822 0.3788 0.6136 1.1843 0.1905 0.0897

Cyclist 8 0.2962 0.2943 1.0661 2.3242 0.2239 0.1433

Cyclist Avg 0.3797 0.3750 0.6702 1.3702 0.1974 0.0951

Avg 3 0.5047 0.4924 0.2519 0.4561 0.1064 0.1022

Avg 5 0.4194 0.4139 0.4872 0.9439 0.1288 0.1302

Avg 8 0.3427 0.3388 0.8742 1.8769 0.1626 0.1748

Avg Avg 0.4222 0.4150 0.5378 1.0923 0.1326 0.1357

Table 5.6: Complete results of our HPTR on the WOMD valid split.

5.f additional qualitative results 113

(a) Change lane. (b) Reverse.

(c) U-Turn. (d) Multi-modal futures.

Figure 5.9: Qualitative results of HPTR predicting vehicles. Scenarios are selected from the
WOMD validation dataset. The ground truth is in orange. The target agent and the predictions are
in cyan. The most confident prediction has the least transparent color, the thickest line and the
biggest cross.

5.F Additional Qualitative Results

In Figures 5.9, 5.10, and 5.11, we provide more qualitative results on WOMD valid of our
HPTR predicting vehicles, pedestrians, and cyclists, respectively.

114 5 hptr

(a) Interact with parked cars. (b) On the crosswalk with other people.

(c) Walk alone on the road edge. (d) Cross the street without using crosswalk.

Figure 5.10: Qualitative results of HPTR predicting pedestrians. Read as Figure 5.9.

(a) Ride on the bike lane (in brown). (b) Ride on a road without bike lane.

(c) Ride on the road edge. (d) Stop at red light.

Figure 5.11: Qualitative results of HPTR predicting cyclists. Read as Figure 5.9.

6
Summary and Perspectives

In this thesis, we explore techniques for training neural policies for both the autonomous
vehicles (AV) and non-playable simulated traffic agents. Here, we provide an overview of
our key contributions, and a discussion on future research directions.

6.1 Summary of Contributions

In Chapter 2, we presented Roach, a reinforcement learning (RL) expert, and an effective
way to imitate this expert. Using the bird’s-eye view representation, Beta distribution
and the exploration loss, Roach set the new performance upper-bound on CARLA while
demonstrating high sample efficiency. To enable a more effective imitation, we proposed
to learn from soft targets, values and latent features generated by Roach. Supervised by
these informative targets, a baseline end-to-end (E2E) imitation learning agent using a
single camera image as input can achieved state-of-the-art performance, even reaching
expert-level performance on the NoCrash-dense benchmark.

In Chapter 3, we alleviated the poor sample efficiency of the Roach expert by introducing
a safety critic to yield a multiplicative value function. We started with the constrained
Markov decision process formulation, derived the safety critic from reachability analysis
and integrated our approach into the Soft Actor-Critic (SAC) and the Proximal Policy
Optimization (PPO) framework. We proposed several versions of SAC and PPO using
our multiplicative value function and showed increased sample efficiency and stability
compared to the baselines. Furthermore, the multiplicative value function can help to
learn the fine details in the reward structure, like soft constraints. To show the real-world
potential of our method, we took a SAC Mult Lagrange agent trained in simulation and
successfully deployed the policy on a real robot in a zero-shot sim-to-real fashion. The
robot showed safe behavior and was able to generalize to dynamic obstacles of novel
shape.

To improve the behavioral realism of the CARLA simulator, in Chapter 4 we presented
TrafficBots, a multi-agent policy learned from real-world motion prediction datasets.
Based on the shared, vectorized context and the individual personality and destination,
TrafficBots can generate realistic multi-agent behaviors in dense urban scenarios. Besides
the simulation, TrafficBots can also be used for motion prediction. Evaluating on motion
prediction tasks allows us to verify the simulation fidelity and benchmark on a public
leaderboard. Based on TrafficBots, we built a differentiable, data-driven simulation

115

116 6 summary and perspectives

framework, which in the future can serve as a platform to develop AV planning algorithms,
or as a world model to train E2E driving policies via RL [35] or model-based imitation
learning [99]. Moreover, TrafficBots could also be integrated as a module to generate
human-like behaviors for bot agents in a game or a full-stack autonomous driving
simulator.

Finally, in Chapter 5, we proposed a novel network architecture that resolved the trade-
off between the accuracy and efficiency of motion prediction methods. Specifically,
we introduced a novel attention module, Knarpe, which allows the pairwise-relative
representation to be used by Transformers. Based on Knarpe, we presented a pure
Transformer-based framework called HPTR, which uses hierarchical architecture to
enable asynchronous token update and avoid redundant computations. While agent-
centric methods suffer from poor scalability and scene-centric methods suffer from poor
accuracy, our HPTR gets the best from both worlds. Experiments on the two most popular
benchmarks showed that our approach achieves superior performance, while satisfying
the real-time and on-board requirements of real-world autonomous driving.

6.2 Discussion and Future Perspectives

In this thesis, we have taken a step forward in the field of learning neural policies to
facilitate prosocial navigation for AV and robots. However, there is still a long way to
go before AV can drive safely in dense urban scenarios and behave like human experts
on public roads. In the following, we briefly discuss what we consider to be some of the
most promising and important directions for the future of E2E driving and AV planning.

Training ego policy in world models: In this thesis, we presented a world model and
focused on improving its configurability, fidelity, scalability and efficiency. However, we
have yet to use this world model to train a policy for the ego vehicle. Recent studies [246,
247] have explored this direction, but it remains unclear whether training the AV policy
against data-driven reactive agents is more effective than training against log-replay or
rule-based simulated agents [248, 249, 250]. Besides planning-oriented world models,
image-based world models [128, 132], and video generation models [251, 252] are also
promising future directions, but they have not been utilized for policy training or testing
yet.

Offline RL: In addition to world models, another promising approach to leverage the
vast offline datasets of AV is offline RL, i.e., RL algorithms that utilize previously collected
data, without additional online data collection or explicitly training a model [253]. Using
sequence modeling [254, 255] or diffusion models [256], significant progress has been
made by recent studies for robotics applications. However, applying offline RL to more
complex and safety-critical environments involving close interaction with humans, such
as autonomous driving in dense urban scenarios, remains an open challenge.

RL from human feedback: There are two reasons why RL from human feedback (RLHF)
could be the next big thing for AV. The first reason is the success of RLHF applied to
large language models (LLM) such as GPT [257] and Llama [258]. The second reason is
that driving in proximity to humans requires prosocial navigation, where safety is not the
only criterion; human acceptability has to be considered as well. RLHF for driving is also

6.2 discussion and future perspectives 117

aligned with how humans learn to drive in a driving school. It would be beneficial for
AVs to learn from comments provided by human experts about their behavior, enabling
them to minimize the probability of accidents without actually experiencing one, as well
as improving driving skills without requiring concrete expert demonstration.

Vision-language models for AV planning: Current planning and E2E driving algo-
rithms still operate at a relatively basic level, similar to human instinct, which considers
short history and lacks high-level reasoning ability. In order to solve the long-tail prob-
lems encountered in real-world scenarios, the AV planning algorithms need the emergent
ability [259] that has been observed in LLM and vision language models (VLM) [260].
Using VLM trained on internet resources as the brain of AV is also aligned with how
humans use their common sense and theoretical knowledge for driving. Before the policy
or the human actually maneuvers the vehicle, it should already be clear what needs to
be done in principle, following common sense and the theoretical knowledge acquired
beforehand. In fact, current VLMs have the common sense that can explain the situation
given an example image of long-tail events on the road, such as unknown objects or
uncommon behavior of pedestrians. In the near future, VLMs should also be able to
pass the theory test of driving and prove its understanding of traffic rules. However, it is
still an open question how to use VLMs and LLMs for real-time planing and E2E urban
driving tasks [261, 262, 263, 264, 265, 266].

Dataset and benchmark for AV planning and E2E driving: Datasets and benchmarks
are still a big bottleneck for data-driven planning and simulation for AV. Current AV
datasets and benchmarks inherit the design for perception tasks, which is not optimal
for planning tasks. While most motion prediction datasets today do not include sensor
measurements, it is important for the planning tasks to know the visual details to reason
about the behavior of surrounding vehicles and pedestrians, especially when dealing
with long-tail events. As a result, we believe an ideal dataset for AV planning and E2E
driving should have the following attributes:

• Collected in the real world.

• High-quality, temporally synchronized data, including various sensor measure-
ments, intermediate perception outputs, as well as navigation information and the
actions of the ego vehicle.

• Sufficient details for driving tasks, including, for example, signal lights of vehicles,
gestures from pedestrians and cyclists.

• Large scale with high diversity, including, for example, dense urban driving sce-
narios involving interactions with humans, as well as uncommon behavior and
confusing situations.

Building such a dataset is an ambitious but necessary task. None of the current AV
datasets meet all these requirements, but datasets such as NuPlan [100] and WOMD [134]
have been working towards these directions in their latest updates.

In terms of the benchmark, current real-world planning benchmarks adopt an offline
setting and use offline metrics as a proxy for online metrics. While closed-loop E2E
evaluation is desirable, it remains unclear how to achieve this with offline real-world
datasets [104, 248]. One promising approach is to use real-world data to minimize the
sim-to-real gap, with the hope that simulators can achieve sufficient fidelity to replace

118 6 summary and perspectives

real-world environment for driving tasks [128, 267]. In the future, we expect to see a
standardized driving test in simulation that all AVs must pass before entering public
roads.

Bibliography

[1] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu. “A survey of deep learning techniques
for autonomous driving”. In: Journal of field robotics 2020.

[2] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda. “A survey of autonomous driving:
Common practices and emerging technologies”. In: IEEE access 2020.

[3] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and R. Urtasun. “End-to-end interpretable
neural motion planner”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2019.

[4] M. Bansal, A. Krizhevsky, and A. S. Ogale. “ChauffeurNet: Learning to Drive by Imitating the
Best and Synthesizing the Worst”. In: Robotics: Science and Systems XV. 2019.

[5] Y. Lu, J. Fu, G. Tucker, X. Pan, E. Bronstein, R. Roelofs, B. Sapp, B. White, A. Faust, S.
Whiteson, et al. “Imitation is not enough: Robustifying imitation with reinforcement learning
for challenging driving scenarios”. In: International Conference on Intelligent Robots and Systems
(IROS). 2023.

[6] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M.
Monfort, U. Muller, J. Zhang, et al. “End to end learning for self-driving cars”. In: arXiv
preprint arXiv:1604.07316 2016.

[7] P. Karkus, B. Ivanovic, S. Mannor, and M. Pavone. “Diffstack: A differentiable and modular
control stack for autonomous vehicles”. In: Conference on robot learning (CoRL). 2023.

[8] Waabi. Introducing the Waabi Driver. https://waabi.ai/introducing-the-waabi-driver/.
Accessed: 2024-03-13. 2022.

[9] electrek.co. Tesla finally releases FSD v12, its last hope for self-driving. https://electrek.co/
2024/01/22/tesla-releases-fsd-v12-last-hope-self-driving/. Accessed: 2024-03-13.
2024.

[10] Wayve. A new approach to self-driving: AV2.0. https://wayve.ai/thinking/a-new-approach-
to-self-driving-av2-0/. Accessed: 2024-03-13. 2021.

[11] S. Ross, G. Gordon, and D. Bagnell. “A reduction of imitation learning and structured pre-
diction to no-regret online learning”. In: International Conference on Artificial Intelligence and
Statistics (AISTATS). 2011.

[12] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. “CARLA: An Open Urban
Driving Simulator”. In: Conference on Robot Learning (CoRL). 2017.

[13] Z. Yang, Y. Chen, J. Wang, S. Manivasagam, W.-C. Ma, A. J. Yang, and R. Urtasun. “Unisim: A
neural closed-loop sensor simulator”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2023.

[14] J. Yang, B. Ivanovic, O. Litany, X. Weng, S. W. Kim, B. Li, T. Che, D. Xu, S. Fidler, M. Pavone,
et al. “Emernerf: Emergent spatial-temporal scene decomposition via self-supervision”. In:
arXiv preprint arXiv:2311.02077 2023.

[15] S. Manivasagam, S. Wang, K. Wong, W. Zeng, M. Sazanovich, S. Tan, B. Yang, W.-C. Ma, and
R. Urtasun. “Lidarsim: Realistic lidar simulation by leveraging the real world”. In: Conference
on Computer Vision and Pattern Recognition (CVPR). 2020.

[16] CARLA. CARLA Autonomous Driving Leaderboard: Traffic Scenarios. https://leaderboard.
carla.org/scenarios/. Accessed: 2024-03-13. 2023.

119

https://waabi.ai/introducing-the-waabi-driver/
https://electrek.co/2024/01/22/tesla-releases-fsd-v12-last-hope-self-driving/
https://electrek.co/2024/01/22/tesla-releases-fsd-v12-last-hope-self-driving/
https://wayve.ai/thinking/a-new-approach-to-self-driving-av2-0/
https://wayve.ai/thinking/a-new-approach-to-self-driving-av2-0/
https://leaderboard.carla.org/scenarios/
https://leaderboard.carla.org/scenarios/

120 bibliography

[17] D. Xu, Y. Chen, B. Ivanovic, and M. Pavone. “Bits: Bi-level imitation for traffic simulation”. In:
International Conference on Robotics and Automation (ICRA). 2023.

[18] S. Suo, S. Regalado, S. Casas, and R. Urtasun. “TrafficSim: Learning to Simulate Realistic
Multi-Agent Behaviors”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2021.

[19] D. Pomerleau. “ALVINN: An Autonomous Land Vehicle In a Neural Network”. In: Advances
in Neural Information Processing Systems (NeurIPS). 1989.

[20] S. Teng, X. Hu, P. Deng, B. Li, Y. Li, Y. Ai, D. Yang, L. Li, Z. Xuanyuan, F. Zhu, et al. “Motion
planning for autonomous driving: The state of the art and future perspectives”. In: IEEE
Transactions on Intelligent Vehicles 2023.

[21] N. Webb, D. Smith, C. Ludwick, T. Victor, Q. Hommes, F. Favaro, G. Ivanov, and T. Daniel.
“Waymo’s safety methodologies and safety readiness determinations”. In: arXiv preprint
arXiv:2011.00054 2020.

[22] S. Ingle and M. Phute. “Tesla autopilot: semi autonomous driving, an uptick for future
autonomy”. In: International Research Journal of Engineering and Technology 2016.

[23] R. L. McCarthy. “Autonomous vehicle accident data analysis: California OL 316 reports: 2015–
2020”. In: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical
Engineering 2022.

[24] J. Wang, X. Wang, T. Shen, Y. Wang, L. Li, Y. Tian, H. Yu, L. Chen, J. Xin, X. Wu, et al. “Parallel
vision for long-tail regularization: Initial results from IVFC autonomous driving testing”. In:
IEEE Transactions on Intelligent Vehicles 2022.

[25] T. Guardian. Cruise robotaxi service hid severity of accident, California officials claim. https://www.
theguardian.com/business/2023/dec/04/california-cruise-robotaxi-san-francisco-
accident-severity. Accessed: 2024-03-13. 2023.

[26] Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du, T. Lin, W. Wang, L. Lu, X. Jia,
Q. Liu, J. Dai, Y. Qiao, and H. Li. “Planning-oriented Autonomous Driving”. In: Conference on
Computer Vision and Pattern Recognition (CVPR). 2023.

[27] A. Prakash, K. Chitta, and A. Geiger. “Multi-modal fusion transformer for end-to-end au-
tonomous driving”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2021.

[28] S. Hu, L. Chen, P. Wu, H. Li, J. Yan, and D. Tao. “St-p3: End-to-end vision-based autonomous
driving via spatial-temporal feature learning”. In: European Conference on Computer Vision
(ECCV). 2022.

[29] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger. “Transfuser: Imitation with
transformer-based sensor fusion for autonomous driving”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 2022.

[30] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy. “End-to-end driving via
conditional imitation learning”. In: International Conference on Robotics and Automation (ICRA).
2018.

[31] F. Codevilla, E. Santana, A. M. López, and A. Gaidon. “Exploring the limitations of behavior
cloning for autonomous driving”. In: International Conference on Computer Vision (ICCV). 2019.

[32] A. Prakash, A. Behl, E. Ohn-Bar, K. Chitta, and A. Geiger. “Exploring data aggregation in
policy learning for vision-based urban autonomous driving”. In: Conference on Computer Vision
and Pattern Recognition (CVPR). 2020.

[33] E. Ohn-Bar, A. Prakash, A. Behl, K. Chitta, and A. Geiger. “Learning situational driving”. In:
Conference on Computer Vision and Pattern Recognition (CVPR). 2020.

[34] S. Hecker, D. Dai, A. Liniger, M. Hahner, and L. Van Gool. “Learning accurate and human-like
driving using semantic maps and attention”. In: International Conference on Intelligent Robots
and Systems (IROS). 2020.

https://www.theguardian.com/business/2023/dec/04/california-cruise-robotaxi-san-francisco-accident-severity
https://www.theguardian.com/business/2023/dec/04/california-cruise-robotaxi-san-francisco-accident-severity
https://www.theguardian.com/business/2023/dec/04/california-cruise-robotaxi-san-francisco-accident-severity

bibliography 121

[35] Z. Zhang, A. Liniger, D. Dai, F. Yu, and L. Van Gool. “End-to-end urban driving by imitating
a reinforcement learning coach”. In: Proceedings of the IEEE/CVF international conference on
computer vision (ICCV). 2021.

[36] A. Behl, K. Chitta, A. Prakash, E. Ohn-Bar, and A. Geiger. “Label Efficient Visual Abstractions
for Autonomous Driving”. In: International Conference on Intelligent Robots and Systems (IROS).
2020.

[37] A. Sauer, N. Savinov, and A. Geiger. “Conditional affordance learning for driving in urban
environments”. In: Conference on Robot Learning (CoRL). 2018.

[38] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. “Deepdriving: Learning affordance for direct
perception in autonomous driving”. In: International Conference on Computer Vision (ICCV). 2015.

[39] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl. “Learning by cheating”. In: Conference on
Robot Learning (CoRL). 2020.

[40] A. Zhao, T. He, Y. Liang, H. Huang, G. V. den Broeck, and S. Soatto. “SAM: Squeeze-and-Mimic
Networks for Conditional Visual Driving Policy Learning”. In: Conference on Robot Learning
(CoRL). 2020.

[41] S. Casas, A. Sadat, and R. Urtasun. “Mp3: A unified model to map, perceive, predict and plan”.
In: Conference on Computer Vision and Pattern Recognition (CVPR). 2021.

[42] L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li. “End-to-end autonomous driving:
Challenges and frontiers”. In: arXiv preprint arXiv:2306.16927 2023.

[43] P. S. Chib and P. Singh. “Recent advancements in end-to-end autonomous driving using deep
learning: A survey”. In: IEEE Transactions on Intelligent Vehicles 2023.

[44] A. Amini, I. Gilitschenski, J. Phillips, J. Moseyko, R. Banerjee, S. Karaman, and D. Rus. “Learn-
ing robust control policies for end-to-end autonomous driving from data-driven simulation”.
In: IEEE Robotics and Automation Letters (RA-L) 2020.

[45] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam, A. Bewley, and
A. Shah. “Learning to drive in a day”. In: International Conference on Robotics and Automation
(ICRA). 2019.

[46] Z. M. Peng, W. Mo, C. Duan, Q. Li, and B. Zhou. “Learning from active human involvement
through proxy value propagation”. In: Advances in neural information processing systems 2024.

[47] Y. Pan, C. Cheng, K. Saigol, K. Lee, X. Yan, E. A. Theodorou, and B. Boots. “Agile Autonomous
Driving using End-to-End Deep Imitation Learning”. In: Robotics: Science and Systems (RSS).
2018.

[48] Y. Hou, Z. Ma, C. Liu, and C. C. Loy. “Learning to steer by mimicking features from heteroge-
neous auxiliary networks”. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
2019.

[49] J. Ho and S. Ermon. “Generative Adversarial Imitation Learning”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2016.

[50] P. Abbeel and A. Y. Ng. “Apprenticeship learning via inverse reinforcement learning”. In:
International Conference on Machine Learning (ICML). 2004.

[51] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
“Playing atari with deep reinforcement learning”. In: arXiv 2013.

[52] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. “Mastering the game of go without human knowledge”. In: Nature
2017.

[53] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. “Grandmaster level in StarCraft II using multi-agent
reinforcement learning”. In: Nature 2019.

122 bibliography

[54] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, et al. “Dota 2 with large scale deep reinforcement learning”. In: arXiv
2019.

[55] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
“Continuous control with deep reinforcement learning.” In: International Conference on Learning
Representations (ICLR). 2016.

[56] H. v. Hasselt, A. Guez, and D. Silver. “Deep Reinforcement Learning with Double Q-Learning”.
In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). 2016.

[57] S. Fujimoto, H. Hoof, and D. Meger. “Addressing function approximation error in actor-critic
methods”. In: International Conference on Machine Learning (ICML). 2018.

[58] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. “Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor”. In: International Conference on Machine
Learning (ICML). 2018.

[59] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
“Asynchronous methods for deep reinforcement learning”. In: International Conference on
Machine Learning (ICML). 2016.

[60] X. Liang, T. Wang, L. Yang, and E. Xing. “Cirl: Controllable imitative reinforcement learning
for vision-based self-driving”. In: European Conference on Computer Vision (ECCV). 2018.

[61] J. Chen, B. Yuan, and M. Tomizuka. “Model-free deep reinforcement learning for urban
autonomous driving”. In: IEEE Intelligent Transportation Systems Conference (ITSC). 2019.

[62] M. Toromanoff, E. Wirbel, and F. Moutarde. “Is Deep Reinforcement Learning Really Superhu-
man on Atari?” In: Deep Reinforcement Learning Workshop of the Conference on Neural Information
Processing Systems. 2019.

[63] G. Kahn, P. Abbeel, and S. Levine. “LaND: Learning to Navigate from Disengagements”. In:
IEEE Robotics and Automation Letters (R-AL) 2021.

[64] M. Toromanoff, E. Wirbel, and F. Moutarde. “End-to-end model-free reinforcement learning
for urban driving using implicit affordances”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2020.

[65] N. Rhinehart, R. McAllister, and S. Levine. “Deep Imitative Models for Flexible Inference,
Planning, and Control”. In: International Conference on Learning Representations (ICLR). 2020.

[66] P. Palanisamy. “Multi-agent connected autonomous driving using deep reinforcement learn-
ing”. In: International Joint Conference on Neural Networks (IJCNN). 2020.

[67] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Pérez. “Deep
reinforcement learning for autonomous driving: A survey”. In: IEEE Transactions on Intelligent
Transportation Systems 2021.

[68] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone. “Risk-constrained reinforcement
learning with percentile risk criteria”. In: The Journal of Machine Learning Research 2017.

[69] K. Srinivasan, B. Eysenbach, S. Ha, J. Tan, and C. Finn. “Learning to be safe: Deep rl with a
safety critic”. In: arXiv preprint arXiv:2010.14603 2020.

[70] A. Stooke, J. Achiam, and P. Abbeel. “Responsive safety in reinforcement learning by pid
lagrangian methods”. In: International Conference on Machine Learning (ICML). 2020.

[71] N. Bührer, Z. Zhang, A. Liniger, F. Yu, and L. Van Gool. “A Multiplicative Value Function for
Safe and Efficient Reinforcement Learning”. In: International Conference on Intelligent Robots and
Systems (IROS). 2023.

[72] P. Geibel and F. Wysotzki. “Risk-sensitive reinforcement learning applied to control under
constraints”. In: Journal of Artificial Intelligence Research 2005.

bibliography 123

[73] Q. Yang, T. D. Simão, S. H. Tindemans, and M. T. Spaan. “WCSAC: Worst-case soft actor
critic for safety-constrained reinforcement learning”. In: Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI). 2021.

[74] C. Tessler, D. J. Mankowitz, and S. Mannor. “Reward constrained policy optimization”. In:
International Conference on Learning Representations (ICLR). 2019.

[75] S. Paternain, L. Chamon, M. Calvo-Fullana, and A. Ribeiro. “Constrained reinforcement
learning has zero duality gap”. In: Advances in Neural Information Processing Systems (NeurIPS).
2019.

[76] J. Achiam, D. Held, A. Tamar, and P. Abbeel. “Constrained policy optimization”. In: Interna-
tional Conference on Machine Learning (ICML). 2017.

[77] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge. “Projection-Based Constrained Policy
Optimization”. In: International Conference on Learning Representations (ICLR). 2020.

[78] Y. Zhang, Q. Vuong, and K. Ross. “First order constrained optimization in policy space”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2020.

[79] Y. Liu, J. Ding, and X. Liu. “IPO: Interior-point policy optimization under constraints”. In:
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). 2020.

[80] T. Xu, Y. Liang, and G. Lan. “Crpo: A new approach for safe reinforcement learning with
convergence guarantee”. In: International Conference on Machine Learning (ICML). 2021.

[81] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause. “Safe model-based reinforcement
learning with stability guarantees”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2017.

[82] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and M. Ghavamzadeh. “Safe Policy
Learning for Continuous Control”. In: Conference on Robot Learning (CoRL). 2020.

[83] S. Huh and I. Yang. “Safe reinforcement learning for probabilistic reachability and safety
specifications: A Lyapunov-based approach”. In: arXiv preprint arXiv:2002.10126 2020.

[84] L. Zhang, R. Zhang, T. Wu, R. Weng, M. Han, and Y. Zhao. “Safe reinforcement learning with
stability guarantee for motion planning of autonomous vehicles”. In: IEEE Transactions on
Neural Networks and Learning Systems 2021.

[85] N. C. Wagener, B. Boots, and C.-A. Cheng. “Safe reinforcement learning using advantage-based
intervention”. In: International Conference on Machine Learning (ICML). 2021.

[86] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick. “End-to-end safe reinforcement learning
through barrier functions for safety-critical continuous control tasks”. In: Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI). 2019.

[87] K. P. Wabersich and M. N. Zeilinger. “Predictive control barrier functions: Enhanced safety
mechanisms for learning-based control”. In: IEEE Transactions on Automatic Control 2022.

[88] K.-C. Hsu, A. Z. Ren, D. P. Nguyen, A. Majumdar, and J. F. Fisac. “Sim-to-Lab-to-Real: Safe
reinforcement learning with shielding and generalization guarantees”. In: Artificial Intelligence
2023.

[89] Y. Liu, A. Halev, and X. Liu. “Policy Learning with Constraints in Model-free Reinforcement
Learning: A Survey.” In: International Joint Conference on Artificial Intelligence (IJCAI). 2021.

[90] S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang, Y. Yang, and A. Knoll. “A review of safe
reinforcement learning: Methods, theory and applications”. In: arXiv preprint arXiv:2205.10330
2022.

[91] S. W. Kim, J. Philion, A. Torralba, and S. Fidler. “Drivegan: Towards a controllable high-quality
neural simulation”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2021.

[92] A. Amini, T.-H. Wang, I. Gilitschenski, W. Schwarting, Z. Liu, S. Han, S. Karaman, and D. Rus.
“Vista 2.0: An open, data-driven simulator for multimodal sensing and policy learning for
autonomous vehicles”. In: International Conference on Robotics and Automation (ICRA). 2022.

124 bibliography

[93] M. Tancik, V. Casser, X. Yan, S. Pradhan, B. Mildenhall, P. P. Srinivasan, J. T. Barron, and
H. Kretzschmar. “Block-nerf: Scalable large scene neural view synthesis”. In: Conference on
Computer Vision and Pattern Recognition (CVPR). 2022.

[94] S. Huang, Z. Gojcic, Z. Wang, F. Williams, Y. Kasten, S. Fidler, K. Schindler, and O. Litany.
“Neural lidar fields for novel view synthesis”. In: International Conference on Computer Vision
(ICCV). 2023.

[95] B. Shen, X. Yan, C. R. Qi, M. Najibi, B. Deng, L. Guibas, Y. Zhou, and D. Anguelov. “Gina-3d:
Learning to generate implicit neural assets in the wild”. In: Conference on Computer Vision and
Pattern Recognition (CVPR). 2023.

[96] Y. Chen, F. Rong, S. Duggal, S. Wang, X. Yan, S. Manivasagam, S. Xue, E. Yumer, and R. Urtasun.
“Geosim: Realistic video simulation via geometry-aware composition for self-driving”. In:
Conference on Computer Vision and Pattern Recognition (CVPR). 2021.

[97] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich, L. Lücken,
J. Rummel, P. Wagner, and E. Wießner. “Microscopic traffic simulation using sumo”. In:
International Conference on Intelligent Transportation Systems (ITSC). 2018.

[98] E. Leurent. An Environment for Autonomous Driving Decision-Making. https://github.com/
eleurent/highway-env. 2018.

[99] O. Scheel, L. Bergamini, M. Wolczyk, B. Osiński, and P. Ondruska. “Urban driver: Learning to
drive from real-world demonstrations using policy gradients”. In: Conference on Robot Learning
(CoRL). 2022.

[100] H. Caesar, J. Kabzan, K. S. Tan, W. K. Fong, E. Wolff, A. Lang, L. Fletcher, O. Beijbom, and
S. Omari. “nuplan: A closed-loop ml-based planning benchmark for autonomous vehicles”. In:
arXiv preprint arXiv:2106.11810 2021.

[101] M. Zhou, J. Luo, J. Villela, Y. Yang, D. Rusu, J. Miao, W. Zhang, M. Alban, I. Fadakar,
and Z. Chen. “SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for
Autonomous Driving”. In: Conference on Robot Learning (CoRL). 2020.

[102] C. Gulino, J. Fu, W. Luo, G. Tucker, E. Bronstein, Y. Lu, J. Harb, X. Pan, Y. Wang, X. Chen, et al.
“Waymax: An accelerated, data-driven simulator for large-scale autonomous driving research”.
In: Advances in Neural Information Processing Systems (NeurIPS). 2024.

[103] J. Bernhard, K. Esterle, P. Hart, and T. Kessler. “BARK: Open behavior benchmarking in
multi-agent environments”. In: International Conference on Intelligent Robots and Systems (IROS).
2020.

[104] N. Contributors. NAVSim: Data-Driven Non-Reactive Autonomous Vehicle Simulation. https:
//github.com/autonomousvision/navsim. 2024.

[105] M. Igl, D. Kim, A. Kuefler, P. Mougin, P. Shah, K. Shiarlis, D. Anguelov, M. Palatucci, B. White,
and S. Whiteson. “Symphony: Learning Realistic and Diverse Agents for Autonomous Driving
Simulation”. In: International Conference on Robotics and Automation (ICRA). 2022.

[106] F. Behbahani, K. Shiarlis, X. Chen, V. Kurin, S. Kasewa, C. Stirbu, J. Gomes, S. Paul, F. A.
Oliehoek, J. Messias, et al. “Learning from demonstration in the wild”. In: International
Conference on Robotics and Automation (ICRA). 2019.

[107] R. Bhattacharyya, B. Wulfe, D. J. Phillips, A. Kuefler, J. Morton, R. Senanayake, and M. J.
Kochenderfer. “Modeling human driving behavior through generative adversarial imitation
learning”. In: IEEE Transactions on Intelligent Transportation Systems 2022.

[108] R. P. Bhattacharyya, D. J. Phillips, B. Wulfe, J. Morton, A. Kuefler, and M. J. Kochenderfer.
“Multi-agent imitation learning for driving simulation”. In: International Conference on Intelligent
Robots and Systems (IROS). 2018.

[109] L. Bergamini, Y. Ye, O. Scheel, L. Chen, C. Hu, L. Del Pero, B. Osiński, H. Grimmett, and P.
Ondruska. “Simnet: Learning reactive self-driving simulations from real-world observations”.
In: International Conference on Robotics and Automation (ICRA). 2021.

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
https://github.com/autonomousvision/navsim
https://github.com/autonomousvision/navsim

bibliography 125

[110] A. Kamenev, L. Wang, O. B. Bohan, I. Kulkarni, B. Kartal, A. Molchanov, S. Birchfield, D.
Nistér, and N. Smolyanskiy. “Predictionnet: Real-time joint probabilistic traffic prediction
for planning, control, and simulation”. In: International Conference on Robotics and Automation
(ICRA). 2022.

[111] Z. Zhong, D. Rempe, D. Xu, Y. Chen, S. Veer, T. Che, B. Ray, and M. Pavone. “Guided
conditional diffusion for controllable traffic simulation”. In: International Conference on Robotics
and Automation (ICRA). 2023.

[112] Z. Zhang, A. Liniger, C. Sakaridis, F. Yu, and L. Van Gool. “TrafficBots: Towards World Models
for Autonomous Driving Simulation and Motion Prediction”. In: International Conference on
Robotics and Automation (ICRA). 2023.

[113] D. Rempe, Z. Luo, X. Bin Peng, Y. Yuan, K. Kitani, K. Kreis, S. Fidler, and O. Litany. “Trace
and pace: Controllable pedestrian animation via guided trajectory diffusion”. In: Conference on
Computer Vision and Pattern Recognition (CVPR). 2023.

[114] D. Rempe, J. Philion, L. J. Guibas, S. Fidler, and O. Litany. “Generating useful accident-prone
driving scenarios via a learned traffic prior”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2022.

[115] J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren, and R. Urtasun. “Advsim:
Generating safety-critical scenarios for self-driving vehicles”. In: Conference on Computer Vision
and Pattern Recognition (CVPR). 2021.

[116] D. Chen, M. Zhu, H. Yang, X. Wang, and Y. Wang. “Data-driven Traffic Simulation: A Compre-
hensive Review”. In: arXiv preprint arXiv:2310.15975 2023.

[117] D. Ha and J. Schmidhuber. “Recurrent world models facilitate policy evolution”. In: Advances
in Neural Information Processing Systems (NeurIPS). 2018.

[118] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. “Learning latent
dynamics for planning from pixels”. In: International Conference on Machine Learning (ICML).
2019.

[119] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. “Dream to Control: Learning Behaviors by Latent
Imagination”. In: International Conference on Learning Representations (ICLR). 2020.

[120] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. “Mastering diverse domains through world
models”. In: arXiv preprint arXiv:2301.04104 2023.

[121] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. “Mastering Atari with Discrete World Models”.
In: International Conference on Learning Representations (ICLR). 2021.

[122] M. Henaff, A. Canziani, and Y. LeCun. “Model-Predictive Policy Learning with Uncertainty
Regularization for Driving in Dense Traffic”. In: International Conference on Learning Representa-
tions (ICLR). 2019.

[123] J. Ho, A. Jain, and P. Abbeel. “Denoising diffusion probabilistic models”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2020.

[124] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. “High-resolution image
synthesis with latent diffusion models”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2022.

[125] W. Peebles and S. Xie. “Scalable diffusion models with transformers”. In: International Conference
on Computer Vision (ICCV). 2023.

[126] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. “Video diffusion
models”. In: Advances in Neural Information Processing Systems (NeurIPS). 2022.

[127] J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P. Kingma, B. Poole, M. Norouzi,
D. J. Fleet, et al. “Imagen video: High definition video generation with diffusion models”. In:
arXiv preprint arXiv:2210.02303 2022.

126 bibliography

[128] A. Hu, L. Russell, H. Yeo, Z. Murez, G. Fedoseev, A. Kendall, J. Shotton, and G. Corrado.
“Gaia-1: A generative world model for autonomous driving”. In: arXiv preprint arXiv:2309.17080
2023.

[129] P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg. “Daydreamer: World models for
physical robot learning”. In: Conference on Robot Learning (CoRL). 2023.

[130] Y. Seo, D. Hafner, H. Liu, F. Liu, S. James, K. Lee, and P. Abbeel. “Masked world models for
visual control”. In: Conference on Robot Learning (CoRL). 2023.

[131] A. Hu, G. Corrado, N. Griffiths, Z. Murez, C. Gurau, H. Yeo, A. Kendall, R. Cipolla, and J.
Shotton. “Model-based imitation learning for urban driving”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2022.

[132] X. Wang, Z. Zhu, G. Huang, X. Chen, and J. Lu. “Drivedreamer: Towards real-world-driven
world models for autonomous driving”. In: arXiv preprint arXiv:2309.09777 2023.

[133] Y. Guan, H. Liao, Z. Li, G. Zhang, and C. Xu. “World Models for Autonomous Driving: An
Initial Survey”. In: arXiv preprint arXiv:2403.02622 2024.

[134] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. R. Qi, Y. Zhou,
et al. “Large scale interactive motion forecasting for autonomous driving: The waymo open
motion dataset”. In: International Conference on Computer Vision (ICCV). 2021.

[135] B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal, B. Pan, R. Kumar, A. Hartnett,
J. K. Pontes, et al. “Argoverse 2: Next generation datasets for self-driving perception and
forecasting”. In: Advances in Neural Information Processing Systems (NeurIPS). 2021.

[136] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom. “nuScenes: A multimodal dataset for autonomous driving”. In: arXiv preprint
arXiv:1903.11027 2019.

[137] Waymo. Waymo open dataset motion prediction challenge 2022. https :/ / waymo. com /open /
challenges/2022/motion-prediction/. Accessed: 2023-05-10. 2022.

[138] Argoverse. Argoverse 2: Motion forecasting competition. https://eval.ai/web/challenges/
challenge-page/1719/leaderboard/4098. Accessed: 2023-05-10. 2022.

[139] nuScenes. nuScenes prediction challenge. https : / / eval . ai / web / challenges / challenge -
page/591/leaderboard/1659. Accessed: 2023-05-10. 2020.

[140] Waymo. Waymo open dataset sim agent challenge 2023. https://waymo.com/open/challenges/
2023/sim-agents/. Accessed: 2023-05-10. 2023.

[141] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen, Y. Shen, Y. Chai, and C.
Schmid. “Tnt: Target-Driven Trajectory Prediction”. In: Conference on Robot Learning (CoRL).
2020.

[142] J. Gu, C. Sun, and H. Zhao. “Densetnt: End-to-end trajectory prediction from dense goal sets”.
In: International Conference on Computer Vision (ICCV). 2021.

[143] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine. “Precog: Prediction conditioned on goals
in visual multi-agent settings”. In: International Conference on Computer Vision (ICCV). 2019.

[144] N. Deo, E. Wolff, and O. Beijbom. “Multimodal trajectory prediction conditioned on lane-graph
traversals”. In: Conference on Robot Learning (CoRL). 2022.

[145] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker. “Desire: Distant future
prediction in dynamic scenes with interacting agents”. In: Conference on Computer Vision and
Pattern Recognition (CVPR). 2017.

[146] S. Casas, C. Gulino, S. Suo, K. Luo, R. Liao, and R. Urtasun. “Implicit latent variable model for
scene-consistent motion forecasting”. In: European Conference on Computer Vision (ECCV). 2020.

[147] C. Tang and R. R. Salakhutdinov. “Multiple futures prediction”. In: Advances in Neural Informa-
tion Processing Systems (NeurIPS) 2019.

https://waymo.com/open/challenges/2022/motion-prediction/
https://waymo.com/open/challenges/2022/motion-prediction/
https://eval.ai/web/challenges/challenge-page/1719/leaderboard/4098
https://eval.ai/web/challenges/challenge-page/1719/leaderboard/4098
https://eval.ai/web/challenges/challenge-page/591/leaderboard/1659
https://eval.ai/web/challenges/challenge-page/591/leaderboard/1659
https://waymo.com/open/challenges/2023/sim-agents/
https://waymo.com/open/challenges/2023/sim-agents/

bibliography 127

[148] B. Ivanovic and M. Pavone. “The trajectron: Probabilistic multi-agent trajectory modeling with
dynamic spatiotemporal graphs”. In: International Conference on Computer Vision (ICCV). 2019.

[149] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov. “Multipath: Multiple Probabilistic Anchor
Trajectory Hypotheses for Behavior Prediction”. In: Conference on Robot Learning (CoRL). 2019.

[150] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural computation 1997.

[151] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. “On the properties of neural machine
translation: Encoder-decoder approaches”. In: arXiv preprint arXiv:1409.1259 2014.

[152] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese. “Social lstm:
Human trajectory prediction in crowded spaces”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2016.

[153] F. Marchetti, F. Becattini, L. Seidenari, and A. D. Bimbo. “Mantra: Memory augmented networks
for multiple trajectory prediction”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2020.

[154] S. H. Park, G. Lee, J. Seo, M. Bhat, M. Kang, J. Francis, A. Jadhav, P. P. Liang, and L.-P. Morency.
“Diverse and admissible trajectory forecasting through multimodal context understanding”. In:
European Conference on Computer Vision (ECCV). 2020.

[155] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone. “Trajectron++: Dynamically-feasible
trajectory forecasting with heterogeneous data”. In: European Conference on Computer Vision
(ECCV). 2020.

[156] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep convolutional
neural networks”. In: Advances in Neural Information Processing Systems (NeurIPS). 2012.

[157] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”. In:
Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[158] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid. “Vectornet: Encoding hd
maps and agent dynamics from vectorized representation”. In: Conference on Computer Vision
and Pattern Recognition (CVPR). 2020.

[159] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I.
Polosukhin. “Attention is all you need”. In: Advances in neural information processing systems
2017.

[160] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of deep bidirectional
transformers for language understanding”. In: arXiv preprint arXiv:1810.04805 2018.

[161] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. “An image is worth 16x16 words: Transformers for
image recognition at scale”. In: arXiv preprint arXiv:2010.11929 2020.

[162] J. Ngiam, V. Vasudevan, B. Caine, Z. Zhang, H.-T. L. Chiang, J. Ling, R. Roelofs, A. Bewley,
C. Liu, A. Venugopal, et al. “Scene Transformer: A unified architecture for predicting future
trajectories of multiple agents”. In: International Conference on Learning Representations (ICLR).
2021.

[163] A. Cui, S. Casas, K. Wong, S. Suo, and R. Urtasun. “Gorela: Go relative for viewpoint-invariant
motion forecasting”. In: International Conference on Robotics and Automation (ICRA). 2023.

[164] N. Nayakanti, R. Al-Rfou, A. Zhou, K. Goel, K. S. Refaat, and B. Sapp. “Wayformer: Motion
forecasting via simple & efficient attention networks”. In: International Conference on Robotics
and Automation (ICRA). 2023.

[165] S. Shi, L. Jiang, D. Dai, and B. Schiele. “Motion Transformer with Global Intention Localiza-
tion and Local Movement Refinement”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2022.

128 bibliography

[166] B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat, N. Nayakanti, A. Cornman, K. Chen,
B. Douillard, C. P. Lam, D. Anguelov, et al. “Multipath++: Efficient information fusion and
trajectory aggregation for behavior prediction”. In: International Conference on Robotics and
Automation (ICRA). 2022.

[167] X. Wang, T. Su, F. Da, and X. Yang. “ProphNet: Efficient Agent-Centric Motion Forecasting
with Anchor-Informed Proposals”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2023.

[168] Z. Zhou, L. Ye, J. Wang, K. Wu, and K. Lu. “Hivt: Hierarchical vector transformer for multi-
agent motion prediction”. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2022.

[169] X. Jia, P. Wu, L. Chen, Y. Liu, H. Li, and J. Yan. “HDGT: Heterogeneous Driving Graph
Transformer for Multi-Agent Trajectory Prediction via Scene Encoding”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI) 2023.

[170] Z. Zhang, A. Liniger, C. Sakaridis, F. Yu, and L. Van Gool. “Real-Time Motion Prediction via
Heterogeneous Polyline Transformer with Relative Pose Encoding”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2023.

[171] Z. Zhou, J. Wang, Y.-H. Li, and Y.-K. Huang. “Query-centric trajectory prediction”. In: Conference
on Computer Vision and Pattern Recognition (CVPR). 2023.

[172] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal policy optimization
algorithms”. In: arXiv preprint arXiv:1707.06347 2017.

[173] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D. Haehnel, T. Hilden,
G. Hoffmann, B. Huhnke, et al. “Junior: The stanford entry in the urban challenge”. In: Journal
of Field Robotics 2008.

[174] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Duggins, T.
Galatali, C. Geyer, et al. “Autonomous driving in urban environments: Boss and the urban
challenge”. In: Journal of Field Robotics 2008.

[175] H. Xu, Y. Gao, F. Yu, and T. Darrell. “End-to-end learning of driving models from large-scale
video datasets”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2017.

[176] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari, V. Iglovikov, and P. Ondruska.
One Thousand and One Hours: Self-driving Motion Prediction Dataset. https://level5.lyft.com/
dataset/. 2020.

[177] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell. “Bdd100k:
A diverse driving dataset for heterogeneous multitask learning”. In: Conference on Computer
Vision and Pattern Recognition (CVPR). 2020.

[178] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. Azar, and D. Silver. “Rainbow: Combining improvements in deep reinforcement learning”.
In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). 2018.

[179] M. Liang, B. Yang, Y. Chen, R. Hu, and R. Urtasun. “Multi-task multi-sensor fusion for 3d
object detection”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2019.

[180] D. Wang, C. Devin, Q.-Z. Cai, P. Krähenbühl, and T. Darrell. “Monocular Plan View Networks
for Autonomous Driving”. In: International Conference on Intelligent Robots and Systems (IROS).
2019.

[181] M. Mueller, A. Dosovitskiy, B. Ghanem, and V. Koltun. “Driving Policy Transfer via Modularity
and Abstraction”. In: Conference on Robot Learning (CoRL). 2018.

[182] C. R. Qi, Y. Zhou, M. Najibi, P. Sun, K. Vo, B. Deng, and D. Anguelov. “Offboard 3D Object
Detection from Point Cloud Sequences”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2021.

[183] D. P. Kingma and M. Welling. “Auto-encoding variational bayes”. In: arXiv preprint arXiv:1312.6114
2013.

https://level5.lyft.com/dataset/
https://level5.lyft.com/dataset/

bibliography 129

[184] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. “High-Dimensional Continuous
Control Using Generalized Advantage Estimation”. In: International Conference on Learning
Representations (ICLR). 2016.

[185] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann. Stable Baselines3.
https://github.com/DLR-RM/stable-baselines3. 2019.

[186] G. Hinton, O. Vinyals, and J. Dean. “Distilling the knowledge in a neural network”. In: arXiv
preprint arXiv:1503.02531 2015.

[187] C. team. CARLA Autonomous Driving Leaderboard. https://leaderboard.carla.org/. Accessed:
2021-02-11. 2020.

[188] S. Hecker, D. Dai, and L. Van Gool. “End-to-end learning of driving models with surround-
view cameras and route planners”. In: European Conference on Computer Vision (ECCV). 2018.

[189] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI Gym. 2016.

[190] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. “Learning robust
perceptive locomotion for quadrupedal robots in the wild”. In: Science Robotics 2022.

[191] F. Fuchs, Y. Song, E. Kaufmann, D. Scaramuzza, and P. Dürr. “Super-human performance
in gran turismo sport using deep reinforcement learning”. In: IEEE Robotics and Automation
Letters (RA-L) 2021.

[192] E. Altman. Constrained Markov Decision Processes. CRC Press, 1999.

[193] A. Ray, J. Achiam, and D. Amodei. Benchmarking Safe Exploration in Deep Reinforcement Learning.
2019.

[194] H. Ma, Y. Guan, S. E. Li, X. Zhang, S. Zheng, and J. Chen. “Feasible actor-critic: Constrained
reinforcement learning for ensuring statewise safety”. In: arXiv preprint arXiv:2105.10682 2021.

[195] B. Peng, Y. Mu, J. Duan, Y. Guan, S. E. Li, and J. Chen. “Separated proportional-integral la-
grangian for chance constrained reinforcement learning”. In: IEEE Intelligent Vehicles Symposium
(IV). 2021.

[196] L. Zhang, L. Shen, L. Yang, S. Chen, X. Wang, B. Yuan, and D. Tao. “Penalized Proximal Policy
Optimization for Safe Reinforcement Learning”. In: International Joint Conference on Artificial
Intelligence (IJCAI). 2022.

[197] A. Sootla, A. I. Cowen-Rivers, T. Jafferjee, Z. Wang, D. H. Mguni, J. Wang, and H. Am-
mar. “Sauté RL: Almost surely safe reinforcement learning using state augmentation”. In:
International Conference on Machine Learning (ICML). 2022.

[198] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin. “A
general safety framework for learning-based control in uncertain robotic systems”. In: IEEE
Transactions on Automatic Control 2018.

[199] W. Zhao, T. He, and C. Liu. “Model-free safe control for zero-violation reinforcement learning”.
In: Conference on Robot Learning (CoRL). 2021.

[200] K. P. Wabersich and M. N. Zeilinger. “A predictive safety filter for learning-based control of
constrained nonlinear dynamical systems”. In: Automatica 2021.

[201] A. Wachi and Y. Sui. “Safe reinforcement learning in constrained Markov decision processes”.
In: International Conference on Machine Learning (ICML). 2020.

[202] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic press, 2014.

[203] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
“Openai gym”. In: arXiv preprint arXiv:1606.01540 2016.

[204] N. Koenig and A. Howard. “Design and use paradigms for gazebo, an open-source multi-robot
simulator”. In: International Conference on Intelligent Robots and Systems (IROS). 2004.

[205] A. Raffin. RL Baselines3 Zoo. https://github.com/DLR-RM/rl-baselines3-zoo. 2020.

https://github.com/DLR-RM/stable-baselines3
https://leaderboard.carla.org/
https://github.com/DLR-RM/rl-baselines3-zoo

130 bibliography

[206] A. Raffin, J. Kober, and F. Stulp. “Smooth exploration for robotic reinforcement learning”. In:
Conference on Robot Learning (CoRL). 2022.

[207] K. Sohn, H. Lee, and X. Yan. “Learning structured output representation using deep conditional
generative models”. In: Advances in Neural Information Processing Systems (NeurIPS). 2015.

[208] Y. Liu, J. Zhang, L. Fang, Q. Jiang, and B. Zhou. “Multimodal motion prediction with stacked
transformers”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2021.

[209] R. Girgis, F. Golemo, F. Codevilla, M. Weiss, J. A. D’Souza, S. E. Kahou, F. Heide, and C. Pal.
“Latent Variable Sequential Set Transformers for Joint Multi-Agent Motion Prediction”. In:
International Conference on Learning Representations (ICLR). 2022.

[210] S. V. Albrecht, C. Brewitt, J. Wilhelm, B. Gyevnar, F. Eiras, M. Dobre, and S. Ramamoorthy.
“Interpretable goal-based prediction and planning for autonomous driving”. In: International
Conference on Robotics and Automation (ICRA). 2021.

[211] C. Brewitt, B. Gyevnar, S. Garcin, and S. V. Albrecht. “GRIT: Fast, interpretable, and verifi-
able goal recognition with learned decision trees for autonomous driving”. In: International
Conference on Intelligent Robots and Systems (IROS). 2021.

[212] N. Rhinehart, K. M. Kitani, and P. Vernaza. “R2p2: A reparameterized pushforward policy
for diverse, precise generative path forecasting”. In: European Conference on Computer Vision
(ECCV). 2018.

[213] J. L. V. Espinoza, A. Liniger, W. Schwarting, D. Rus, and L. Van Gool. “Deep Interactive Motion
Prediction and Planning: Playing Games with Motion Prediction Models”. In: Learning for
Dynamics and Control Conference. 2022.

[214] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. “Nerf:
Representing scenes as neural radiance fields for view synthesis”. In: Communications of the
ACM 2021.

[215] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang, Y. Lan, L. Wang, and T. Liu.
“On layer normalization in the transformer architecture”. In: International Conference on Machine
Learning (ICML). 2020.

[216] X. Mo, Z. Huang, and C. Lv. “Multi-Modal Interactive Agent Trajectory Prediction Using Het-
erogeneous Edge-Enhanced Graph Attention Network”. In: Workshop on Autonomous Driving,
CVPR. 2021.

[217] D. Wu and Y. Wu. “AIR2 for Interaction Prediction”. In: Workshop on Autonomous Driving,
CVPR. 2021.

[218] A. Gupta, A. Anpalagan, L. Guan, and A. S. Khwaja. “Deep learning for object detection and
scene perception in self-driving cars: Survey, challenges, and open issues”. In: Array 2021.

[219] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y. Chai,
B. Caine, et al. “Scalability in perception for autonomous driving: Waymo open dataset”. In:
Conference on Computer Vision and Pattern Recognition (CVPR). 2020.

[220] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser. “A review of motion planning for
highway autonomous driving”. In: IEEE Transactions on Intelligent Transportation Systems 2019.

[221] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli. “A survey of motion planning and
control techniques for self-driving urban vehicles”. In: IEEE Transactions on intelligent vehicles
2016.

[222] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka. “Real-time motion planning methods for
autonomous on-road driving: State-of-the-art and future research directions”. In: Transportation
Research Part C: Emerging Technologies 2015.

[223] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun. “Learning lane graph
representations for motion forecasting”. In: European Conference on Computer Vision (ECCV).
2020.

bibliography 131

[224] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde. “Thomas: Trajectory
heatmap output with learned multi-agent sampling”. In: International Conference on Learning
Representations (ICLR). 2022.

[225] X. Mo, Y. Xing, and C. Lv. “Heterogeneous edge-enhanced graph attention network for
multi-agent trajectory prediction”. In: arXiv preprint arXiv:2106.07161 2021.

[226] Q. Sun, X. Huang, J. Gu, B. C. Williams, and H. Zhao. “M2I: From factored marginal trajectory
prediction to interactive prediction”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2022.

[227] Argoverse. Argoverse 2: Motion forecasting competition. https://eval.ai/web/challenges/
challenge-page/1719/leaderboard/4761. Accessed: 2023-05-10. 2023.

[228] Waymo. Waymo open dataset interaction prediction challenge 2021. https://waymo.com/open/
challenges/2021/interaction-prediction/. Accessed: 2023-05-10. 2021.

[229] W. Zhan, L. Sun, H. Ma, C. Li, X. Jia, M. Tomizuka, et al. INTERPRET: INTERACTION-Dataset-
Based PREdicTion Challenge. http://challenge.interaction- dataset.com/leader- board.
Accessed: 2023-05-10. 2021.

[230] A. Hu, Z. Murez, N. Mohan, S. Dudas, J. Hawke, V. Badrinarayanan, R. Cipolla, and A. Kendall.
“FIERY: future instance prediction in bird’s-eye view from surround monocular cameras”. In:
International Conference on Computer Vision (ICCV). 2021.

[231] S. Casas, C. Gulino, R. Liao, and R. Urtasun. “Spagnn: Spatially-aware graph neural networks
for relational behavior forecasting from sensor data”. In: International Conference on Robotics and
Automation (ICRA). 2020.

[232] A. Cui, S. Casas, A. Sadat, R. Liao, and R. Urtasun. “Lookout: Diverse multi-future prediction
and planning for self-driving”. In: International Conference on Computer Vision (ICCV). 2021.

[233] W. Zeng, M. Liang, R. Liao, and R. Urtasun. “Lanercnn: Distributed representations for graph-
centric motion forecasting”. In: International Conference on Intelligent Robots and Systems (IROS).
2021.

[234] J. Huang, V. Sivakumar, M. Mnatsakanyan, and G. Pang. “Improving rotated text detection
with rotation region proposal networks”. In: arXiv preprint arXiv:1811.07031 2018.

[235] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. “Language models are
unsupervised multitask learners”. In: OpenAI blog 2019.

[236] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. “End-to-end
object detection with transformers”. In: European Conference on Computer Vision (ECCV). 2020.

[237] F. Zeng, B. Dong, Y. Zhang, T. Wang, X. Zhang, and Y. Wei. “Motr: End-to-end multiple-object
tracking with transformer”. In: European Conference on Computer Vision (ECCV). 2022.

[238] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov. “Transformer-xl: Attentive
language models beyond a fixed-length context”. In: Association for Computational Linguistics
(ACL). 2019.

[239] P. Shaw, J. Uszkoreit, and A. Vaswani. “Self-attention with relative position representations”.
In: North American Chapter of the Association for Computational Linguistics (NAACL). 2018.

[240] B. Wang, L. Shang, C. Lioma, X. Jiang, H. Yang, Q. Liu, and J. G. Simonsen. “On position
embeddings in bert”. In: International Conference on Learning Representations (ICLR). 2021.

[241] K. Wu, H. Peng, M. Chen, J. Fu, and H. Chao. “Rethinking and improving relative position
encoding for vision transformer”. In: International Conference on Computer Vision (ICCV). 2021.

[242] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. “Pointnet: Deep learning on point sets for 3d
classification and segmentation”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2017.

[243] S. Konev. “MPA: MultiPath++ Based Architecture for Motion Prediction”. In: arXiv preprint
arXiv:2206.10041 2022.

https://eval.ai/web/challenges/challenge-page/1719/leaderboard/4761
https://eval.ai/web/challenges/challenge-page/1719/leaderboard/4761
https://waymo.com/open/challenges/2021/interaction-prediction/
https://waymo.com/open/challenges/2021/interaction-prediction/
http://challenge.interaction-dataset.com/leader-board

132 bibliography

[244] X. Gao, X. Jia, Y. Li, and H. Xiong. “Dynamic Scenario Representation Learning for Motion
Forecasting with Heterogeneous Graph Convolutional Recurrent Networks”. In: IEEE Robotics
and Automation Letters (RA-L) 2023.

[245] Y. Wang, H. Zhou, Z. Zhang, C. Feng, H. Lin, C. Gao, Y. Tang, Z. Zhao, S. Zhang, J. Guo, et al.
“TENET: Transformer Encoding Network for Effective Temporal Flow on Motion Prediction”.
In: arXiv preprint arXiv:2207.00170 2022.

[246] C. Zhang, R. Guo, W. Zeng, Y. Xiong, B. Dai, R. Hu, M. Ren, and R. Urtasun. “Rethinking
closed-loop training for autonomous driving”. In: European Conference on Computer Vision
(ECCV). 2022.

[247] C. Zhang, J. Tu, L. Zhang, K. Wong, S. Suo, and R. Urtasun. “Learning Realistic Traffic Agents
in Closed-loop”. In: Conference on Robot Learning (CoRL). 2023.

[248] D. Dauner, M. Hallgarten, A. Geiger, and K. Chitta. “Parting with Misconceptions about
Learning-based Vehicle Motion Planning”. In: Conference on Robot Learning (CoRL). 2023.

[249] D. Chen, V. Koltun, and P. Krähenbühl. “Learning to drive from a world on rails”. In: Interna-
tional Conference on Computer Vision (ICCV). 2021.

[250] D. Chen and P. Krähenbühl. “Learning from all vehicles”. In: Conference on Computer Vision and
Pattern Recognition (CVPR). 2022.

[251] OpenAI. Video generation models as world simulators. https://openai.com/research/video-
generation-models-as-world-simulators. Accessed: 2024-03-13. 2024.

[252] OpenAI. Sora: Creating video from text. https://openai.com/sora. Accessed: 2024-03-13. 2024.

[253] S. Levine, A. Kumar, G. Tucker, and J. Fu. “Offline reinforcement learning: Tutorial, review,
and perspectives on open problems”. In: arXiv preprint arXiv:2005.01643 2020.

[254] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. “Decision transformer: Reinforcement learning via sequence modeling”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2021.

[255] M. Janner, Q. Li, and S. Levine. “Offline Reinforcement Learning as One Big Sequence
Modeling Problem”. In: Advances in Neural Information Processing Systems (NeurIPS). 2021.

[256] M. Janner, Y. Du, J. Tenenbaum, and S. Levine. “Planning with Diffusion for Flexible Behavior
Synthesis”. In: International Conference on Machine Learning (ICML). 2022.

[257] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K.
Slama, A. Ray, et al. “Training language models to follow instructions with human feedback”.
In: Advances in Neural Information Processing Systems (NeurIPS). 2022.

[258] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. “Llama 2: Open foundation and fine-tuned chat models”. In:
arXiv preprint arXiv:2307.09288 2023.

[259] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D.
Zhou, D. Metzler, et al. “Emergent abilities of large language models”. In: arXiv preprint
arXiv:2206.07682 2022.

[260] J. Li, D. Li, S. Savarese, and S. Hoi. “Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models”. In: International Conference on Machine
Learning (ICML). 2023.

[261] Y. Cui, S. Huang, J. Zhong, Z. Liu, Y. Wang, C. Sun, B. Li, X. Wang, and A. Khajepour.
“DriveLLM: Charting the path toward full autonomous driving with large language models”.
In: IEEE Transactions on Intelligent Vehicles 2023.

[262] C. Sima, K. Renz, K. Chitta, L. Chen, H. Zhang, C. Xie, P. Luo, A. Geiger, and H. Li. “Drivelm:
Driving with graph visual question answering”. In: arXiv preprint arXiv:2312.14150 2023.

[263] J. Mao, Y. Qian, H. Zhao, and Y. Wang. “Gpt-driver: Learning to drive with gpt”. In: arXiv
preprint arXiv:2310.01415 2023.

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/sora

bibliography 133

[264] J. Mao, J. Ye, Y. Qian, M. Pavone, and Y. Wang. A Language Agent for Autonomous Driving. 2023.

[265] Y. Ma, Y. Cao, J. Sun, M. Pavone, and C. Xiao. Dolphins: Multimodal Language Model for Driving.
2023.

[266] L. Chen, O. Sinavski, J. Hünermann, A. Karnsund, A. J. Willmott, D. Birch, D. Maund, and
J. Shotton. “Driving with llms: Fusing object-level vector modality for explainable autonomous
driving”. In: arXiv preprint arXiv:2310.01957 2023.

[267] NVIDIA. NVIDIA Supercharges Autonomous System Development with Omniverse Cloud APIs.
https://blogs.nvidia.com/blog/omniverse-cloud-apis/?ncid=so-link-489278. Accessed:
2024-03-19. 2024.

https://blogs.nvidia.com/blog/omniverse-cloud-apis/?ncid=so-link-489278

	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction
	Autonomous Driving
	End-to-End Driving
	Imitation Learning
	Reinforcement Learning

	Traffic Simulation
	Data-Driven Simulation
	World Models
	Motion Prediction

	Thesis Outline

	 End-to-End Urban Driving by Imitating a Reinforcement Learning Coach
	Introduction
	Related Work
	Method
	RL Coach
	IL Agents Supervised by Roach

	Experiments
	Performance of Experts
	Performance of IL Agents

	Conclusion

	Appendices
	Summary
	Other Supplementary Materials
	Videos
	Code
	Rendering issues

	Implementation Details
	Roach
	IL Agent Supervised by Roach
	Autopilot

	Benchmarks
	Additional Experimental Results

	 A Multiplicative Value Function for Safe and Efficient Reinforcement Learning
	Introduction
	Related Work
	Preliminaries
	Methods
	Experimental Results
	Results and Comparisons
	Real-World Experiments

	Conclusions and Limitations

	Appendices
	Supplementary Video
	Hyperparameter Tuning
	Complete Algorithms for SAC and PPO Multiplicative
	Detailed Experimental Description
	Point Robot Navigation
	Additional Experimental Results
	Additional Ablation Studies

	 TrafficBots: Towards World Models for Autonomous Driving Simulation and Motion Prediction
	Introduction
	Related Work
	Problem Formulation
	TrafficBots
	Policy
	Contexts
	Training
	Implementation Details

	Experiments
	Conclusions and Future Works

	Appendices
	Supplementary Video
	Dataset and Pre-Processing
	Ground-Truth Destination
	Detailed Network Architecture
	Training Details
	Inference Details
	More Experimental Results

	 Real-Time Motion Prediction via Heterogeneous Polyline Transformer with Relative Pose Encoding
	Introduction
	Related work
	Method
	Pairwise-Relative Polyline Representation
	K-Nearest Neighbors Attention with Relative Pose Encoding
	Heterogeneous Polyline Transformer with Relative Pose Encoding
	Output Representation and Training Strategies

	Experiments
	Experimental Setup
	Benchmark Results
	Ablation Study
	Efficiency Analysis and Qualitative Results

	Conclusion

	Appendices
	Output Representation and Training Strategies
	Implementation Details
	Knarpe Implementation
	Network Architectures
	Pre-Processing and Post-Processing

	Explanation of the Visualization
	Additional Ablation Studies
	Additional Quantitative Results
	Additional Qualitative Results

	Summary and Perspectives
	Summary of Contributions
	Discussion and Future Perspectives

	Bibliography

