

TrafficBots:

Towards World Models for Autonomous Driving Simulation and Motion Prediction

Zhejun Zhang¹, Alexander Liniger¹, Dengxin Dai^{1,2}, Fisher Yu¹, Luc Van Gool¹

¹Computer Vision Lab, ETH Zurich. ²MPI for Informatics. ³PSI, KU Leuven

World Model for Autonomous Driving Planning

TrafficBots: A Multi-Agent Auto-Regressive Policy

TrafficBots: Network Architecture

- **Transformer** with self-attention and cross-attention.
- State Encoder using positional and angular embedding.
- **Personality** represented by the latent of conditional VAE.
- **Destination** predicted via multi-class classification over polylines.
- **Dynamics** simplified to unicycle model.

Performance

14010 11 2 0					8		510410				
WOMD ^[1] test		soft mAP \uparrow	mAP	↑ min	$minADE \downarrow$		DE↓	miss rate	↓ overla	overlap rate \downarrow	
SceneTransformer ^[2]		N/A	0.279	0.279 0.612		1.212		0.156	0.	0.147	
Waymo LSTM ^[1]		0.182	0.176	5 1	1.007		55	0.375	0.	0.190	
TrafficBots (a priori)		0.219	0.212	2 1	1.313 3)2	0.344	0.	0.145	
	Ta	ble 2: Abla	tion. All	model	s are trai	ined for	48 ho	urs.			
	a priori sim K=6 (motion prediction)					a posteriori sim K=1					
WOMD ^[1] valid	mA ↑	$\begin{array}{c} P \min\\ ADE \downarrow \end{array}$	$\min_{FDE \downarrow}$	miss rate ↓	overl. rate↓	diff. pos↓	diff. rot \downarrow	veh col %,↓	run red %,↓	passive %,↓	
TrafficBots	0.1	8 1.49	3.66	0.39	0.15	0.80	2.84	11.5	1.31	19.1	
w/o angular emb.	0.12	2 1.74	4.48	0.48	0.18	0.74	3.05	14.7	1.47	19.4	
w/o personality	0.0	5 1.66	4.09	0.48	0.15	1.29	3.63	13.6	1.50	19.2	
w/o dest. w/ goal	0.1'	7 1.47	3.44	0.40	0.16	0.78	2.68	12.3	1.35	20.2	
SimNet ^[3]	0.0	1 2.76	7.77	0.76	0.21	2.27	7.37	21.9	1.59	19.6	

Table 1: Performance on the Waymo (marginal) motion prediction leaderboard

Task 1: A Priori Simulation, i.e. motion prediction, multi-modal.

Task 2: **A Posteriori** Simulation, i.e. scenario reconstruction, single-modal.

TrafficBots achieve **baseline** performance on open-loop motion prediction task, and **SOTA** performance on closed-loop simulation task.

Prediction and Simulation Results

- In Magenta:
 - Agent of interest
 - GT Future trajectory
 - GT destination polyline
- In Cyan:
 - A priori trajectories.
 - GT future and destination are not given.
- In Yellow:
 - A posteriori trajectory.
 - GT future and destination are given.
- All agents are simulated simultaneously. A selected one is visualized.

Summary

- High-Fidelity Simulation for AD
 - Behavior-Realism: for E2E or planning algorithms.
 - Photo-Realism: for E2E or perception algorithms.
- TrafficBots, A Multi-Agent Policy:
 - Realistic behavior learned from real-world datasets.
 - Game AI for bot-agents in AD simulation.
 - Faster than real-time simulation.
 - Parallelizable on single GPU.
 - All traffic participants in dense urban scenarios.
 - Configurable and interpretable via personality and destination.