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World Model for Autonomous Driving Planning
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TrafficBots: A Multi-Agent Auto-Regressive Policy
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TrafficBots: Network Architecture
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* Transformer with self-attention and cross-attention.

e State Encoder using positional and angular embedding.

* Personality represented by the latent of conditional VAE.

* Destination predicted via multi-class classification over polylines.
e Dynamics simplified to unicycle model.




Performance

Table 1: Performance on the Waymo (marginal) motion prediction leaderboard

WOMDW! fest soft nAP1 mAP1 minADE| minFDE | missrate | overlap rate |
SceneTransformer!?! N/A 0.279 0.612 1.212 0.156 0.147
Waymo LSTM!!! 0.182 0.176 1.007 2.355 0.375 0.190
TrafficBots (a priori) 0.219 0.212 1.313 3.102 0.344 0.145
Table 2: Ablation. All models are trained for 48 hours.
a priori sim K=6 (motion prediction) a posteriori sim K=1
[1] <onts mAP  min min  miss overl. diff. diff. vehcol runred passive
WOMD™ valid T+ ADE| FDEJ| rate| rate] pos] rotl %,/ %5 4 % .
TrafficBots 0.18 1.49 3.66 039 0.15 0.80 2.84 11.5 1.31 19.1

w/o angular emb. 0.12 1.74 448 048 0.18 0.74 3.05 14.7 1.47 19.4
w/o personality  0.06 1.66 4.09 048 0.15 1.29 3.63 13.6 1.50 19.2
w/o dest. w/ goal 0.17 147 344 040 0.16 0.78 2.68 12.3 1.35 20.2
SimNetl! 001 276 7.77 0.76 0.21 227 737 219 159  19.6

Task 1: A Priori Simulation, i.e. motion prediction, multi-modal.

Task 2: A Posteriori Simulation, i.e. scenario reconstruction, single-modal.
TrafficBots achieve baseline performance on open-loop motion prediction task,
and SOTA performance on closed-loop simulation task.




Prediction and Simulation Results

Trajectories Destinations

* Agent of interest
* GT Future trajectory
* GT destination polyline

e A priori trajectories.
* @GT future and destination are not given.

* A posteriori trajectory.
e @GT future and destination are given.
* All agents are simulated simultaneously. A
selected one is visualized.




Summary

* High-Fidelity Simulation for AD

Behavior-Realism: for E2E or planning algorithms.
Photo-Realism: for E2E or perception algorithms.

* TrafficBots, A Multi-Agent Policy:

Realistic behavior learned from real-world datasets.

Game Al for bot-agents in AD simulation.

Faster than real-time simulation.

Parallelizable on single GPU.

All traffic participants in dense urban scenarios.

Configurable and interpretable via personality and destination.




